SABIO-RK (http://sabio.h-its.org/) is a web-accessible database storing comprehensive information about biochemical reactions and their kinetic properties. SABIO-RK offers standardized data manually extracted from the literature and data directly submitted from lab experiments. The database content includes kinetic parameters in relation to biochemical reactions and their biological sources with no restriction on any particular set of organisms. Additionally, kinetic rate laws and corresponding equations as well as experimental conditions are represented. All the data are manually curated and annotated by biological experts, supported by automated consistency checks. SABIO-RK can be accessed via web-based user interfaces or automatically via web services that allow direct data access by other tools. Both interfaces support the export of the data together with its annotations in SBML (Systems Biology Markup Language), e.g. for import in modelling tools.
SABIO-RK (http://sabiork.h-its.org/) is a manually curated database containing data about biochemical reactions and their reaction kinetics. The data are primarily extracted from scientific literature and stored in a relational database. The content comprises both naturally occurring and alternatively measured biochemical reactions and is not restricted to any organism class. The data are made available to the public by a web-based search interface and by web services for programmatic access. In this update we describe major improvements and extensions of SABIO-RK since our last publication in the database issue of Nucleic Acid Research (2012). (i) The website has been completely revised and (ii) allows now also free text search for kinetics data. (iii) Additional interlinkages with other databases in our field have been established; this enables users to gain directly comprehensive knowledge about the properties of enzymes and kinetics beyond SABIO-RK. (iv) Vice versa, direct access to SABIO-RK data has been implemented in several systems biology tools and workflows. (v) On request of our experimental users, the data can be exported now additionally in spreadsheet formats. (vi) The newly established SABIO-RK Curation Service allows to respond to specific data requirements.
A computational model of the glucagon/insulin-driven liver glucohomeostasis function, focusing on the buffering of glucose into glycogen, has been developed. The model exemplifies an 'engineering' approach to modelling in systems biology, and was produced by linking together seven component models of separate aspects of the physiology. The component models use a variety of modelling paradigms and degrees of simplification. Model parameters were determined by an iterative hybrid of fitting to high-scale physiological data, and determination from small-scale in vitro experiments or molecular biological techniques. The component models were not originally designed for inclusion within such a composite model, but were integrated, with modification, using our published modelling software and computational frameworks. This approach facilitates the development of large and complex composite models, although, inevitably, some compromises must be made when composing the individual models. Composite models of this form have not previously been demonstrated.
stract athematical and computational modelling are emerging as important techniques for studying the behaviour of complex biological systems. argue that two advances are necessary to properly leverage these techniques: firstly, the ability to integrate models developed and executed on arate tools, without the need for substantial translation and secondly, a comprehensive system for storing and man-ageing not only the models mselves but also the parameters and tools used to execute those models and the results they produce. A framework for modelling with these tures is described here. We have developed of a suite of XML-based services used for the storing and analysis of models, model parameters results, and tools for model integration. We present these here, and evaluate their effectiveness using a worked example based on part of the atocyte glycogenolysis system.
Collecting, curating, interlinking, and sharing high quality data are central to de.NBI-SysBio, the systems biology data management service center within the de.NBI network (German Network for Bioinformatics Infrastructure). The work of the center is guided by the FAIR principles for scientific data management and stewardship. FAIR stands for the four foundational principles Findability, Accessibility, Interoperability, and Reusability which were established to enhance the ability of machines to automatically find, access, exchange and use data. Within this overview paper we describe three tools (SABIO-RK, Excemplify, SEEK) that exemplify the contribution of de.NBI-SysBio services to FAIR data, models, and experimental methods storage and exchange. The interconnectivity of the tools and the data workflow within systems biology projects will be explained. For many years we are the German partner in the FAIRDOM initiative (http://fair-dom.org) to establish a European data and model management service facility for systems biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.