Photovoltaic (PV) modules require maximum power point tracking (MPPT) algorithms to ensure that the amount of power extracted is maximized. In this paper, we propose a low-complexity MPPT algorithm that is based on the neural network (NN) model of the photovoltaic module. Namely, the expression for the output current of the NN model is used to derive the analytical, iterative rules for determining the maximal power point (MPP) voltage and irradiance estimation. In this way, the computational complexity is reduced compared to the other NN-based MPPT methods, in which the optimal voltage is predicted directly from the measurements. The proposed algorithm cannot instantaneously determine the optimal voltage, but it contains a tunable parameter for controlling the trade-off between the tracking speed and computational complexity. Numerical results indicate that the relative error between the actual maximum power and the one obtained by the proposed algorithm is less than 0.1%, which is up to ten times smaller than in the available algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.