Variant alleles of two promoter polymorphisms in the BRM gene (BRM-741, BRM-1321), create MEF2D transcription binding sites that lead to epigenetic silencing of BRM, the key catalytic component of the SWI/SNF chromatin remodeling complex. BRM suppression can be reversed pharmacologically.(1) Our group and others have reported associations with lung, head and neck, hepatocellular cancer risk,(1-3) and with lung and esophageal cancer prognosis (ASCO 2013; abstract 11057 & 4077). Herein, we assessed risk and survival associations with pancreatic cancer. A provincial population-based case-control study was conducted with 623 histologically confirmed pancreatic adenocarcinoma cases and 1,192 age/gender distribution-matched controls.(4) Survival of cases was obtained through the Ontario Cancer Registry. Logistic and Cox proportional hazard regression models were fitted, adjusting for relevant covariates. Median age was 65 y; 52% were male; Stage I (8%), II (55%), III (14%), IV (23%); 53% after curative resection, 79% after chemotherapy; and 83% had died. In the risk analysis, adjusted odds ratios (aOR) were 1.01 (95% CI: 0.1-2.0) and 0.96 (95% CI: 0.7-1.3) for the homozygotes of BRM-741 and BRM-1321, respectively; aOR of double-homozygotes was 1.11 (95% CI: 0.80-1.53), compared to the double-wildtype. For the survival analysis, adjusted hazard ratios (aHR) were 2.19 (95% CI: 1.9-2.5) for BRM-741 and 1.94 (95% CI: 1.7-2.2) for BRM-1321, per unit increase in variant alleles. Compared with the double-wildtype, aHR for carrying no, one, and two double-homozygotes were 2.14 (95% CI: 1.6-2.8), 4.17 (95% CI: 3.0-5.7), 8.03 (95% CI: 5.7-11.4), respectively. In conclusion, two functional promoter BRM polymorphisms were not associated with pancreatic adenocarcinoma risk, but are strongly associated with survival.