AbstrACt:The object of an experiment was inorganic and organic forms of zinc, copper and manganese applied in mineral mixtures to dairy cows. The experiment was carried out on 90 cows with average milk yield for previous lactation of about 9 500 kg milk. The cows received mineral mixtures containing inorganic or organic forms of zinc, copper and manganese for 6 weeks before calving and during the first three months of lactation. The application of microelements as bioplexes in amounts covering 30% of daily requirements of cows had a positive effect on an increase in colostrum dry matter content from 20.9 to 23.35% as well as on the concentration of protein and fat, and the level of minerals -calcium, phosphorus, magnesium, zinc and copper. In cows' milk in the 2 nd and 3 rd month of lactation there were no differences in contents of minerals. However in the blood serum of cows in the 1 st and 2 nd month of lactation an increase in calcium concentration from 1.96 to 2.14 g/kg was observed while the content of phosphorus also increased average from 1.76 to 2.22 g/kg in the first trimester of lactation.
Young hens were fed over a period of 150 d with 2 kinds of diets including corn and soybean meal or corn, soybean, and rapeseed meal. Diets were enriched with potassium iodide (KI) or potassium iodate (KIO3) as an I source in amounts equal to 1, 3, or 5 mg of supplemented I/kg of feed. The hen performance, egg quality, hematological and morphotic indices in blood, hepatic enzyme activity, lipid indices in blood serum as well as I accumulation in wet egg content were determined. Introduction of 00-variety rapeseed meal into the diet improved the laying rate and feed conversion (P < 0.05); however, better egg weight was noted by feeding the hens with a diet without rapeseed meal. Use of KI as an I source enhanced the egg weight. The increased I level in the diet had an equivocal influence on egg weight, improved the feed conversion per 1 kg of eggs, and decreased the proportion of damaged eggs. The use of corn, soybean, and rapeseed meal in hen diets significantly improved yolk color; similar results were noted after an increase in I levels in the diets after 3 mo of feeding. Hematological indices of hen blood demonstrated significantly higher red blood cells numbers and hemoglobin concentrations with the use of KI. The use of a diet containing rapeseed meal led to an enhancement of hepatic enzyme activity, especially of alkaline phosphatase (P = 0.007). Lipid metabolism indices were not influenced by the kind of diet or the I source or level. The accumulation of I in wet egg content was negatively influenced by the use of a diet containing rapeseed meal (P = 0.000). The application of KI as an I source enhanced (P = 0.003) the accretion of I in eggs after 5 mo of treatment. Enhanced I supply significantly increased accumulation of I in eggs (P = 0.000) after 3 and 5 mo of the experiment from 260 and 310 to 1,011 and 1,256 µg/kg of wet egg content, respectively.
Chemical composition and biological value of spray dried porcine blood by-3 products and bone protein hydrolysate for young chickens 4 5
The following study focuses on a comparison of the effectiveness of egg content enrichment with selenium (Se) via application of sodium selenite (Na-selenite), selenium-enriched yeast (Se-Yeast), or selenomethionine (Se-Met) in laying hen diets. Two hundred sixteen laying hens were divided into four treatments, each comprising eighteen replications, and each with three hens per cage. Animals were fed a basal diet without Se supplementation (control: selenium content 0.058 mg/kg), with the addition of Na-selenite, Se-Yeast, or Se-Met in amounts equivalent to 0.3 mg/kg of added selenium. The egg quality, the selenium content in eggs after the third and the fifth months of using Se supplementation, and the selenium level in the liver were determined. Enrichment of egg content with selenium was the most effective (382 μg/kg) via application of dietary Se-Met. Application of Na-selenite and Se-Yeast led to a similar effect on Se-accretion in egg content (255.9 and 258.9 μg/kg, respectively). Additionally, the calculated average Se concentration in one fresh egg was also higher in eggs from hens that received selenium additives in their diet and was far higher, almost three times higher for Se-Met addition, than the concentrations in controls. Se-accretion in the liver wet tissue was greater following application of Se-Yeast in the diet than following other treatments. These results indicate that the use of selenomethionine in the laying hen diet is the best method of enriching eggs with this micronutrient. In turn, the eggs obtained in this way can be an excellent source of highly bioavailable selenium in the human diet.
The study concerns the effect of wheat germ expeller (WGE) as a feed additive given to male Ross-308 broiler chickens on their meat’s energy and nutritional value, and coverage of nutrient reference values-requirements (NRV-R) of consumers for particular minerals. The chickens in the control group (CT—Control Treatment) were fed a standard complete mix. The experimental groups (EX5, EX10, EX15) were given a feed in which wheat middling was replaced with 5, 10, and 15% WGE. The breast and thigh muscles of 32 randomly selected chickens (8 in each group) were analyzed. More water, crude protein, P, Mg, Fe, Cu, and Mn were determined in the breast muscles, and more crude fat, crude ash, Ca, and Zn in the thigh muscles. Chickens from the CT group consumed significantly (p ≤ 0.01) less feed per body weight than those from groups EX5 to EX15, but achieved the highest body weight per 100 g of consumed feed. A higher (p ≤ 0.01) feed, energy, crude protein, and crude fat intake was observed in groups EX5 to EX15 compared to CT. The higher (p ≤ 0.01) value of protein efficiency ratios was indicated in the CT group. The WGE additive did not impact the muscles’ energy values but affected the nutritional value. The daily consumption of 100 g of breast muscles to a large extent covers the consumer NRV-R for P, Mg Fe, Cu, and Mn. However, thigh muscles cover the NRV-R to a greater extent for Ca and Zn. The EX15, EX5, and EX10 muscles covered most of the NRV-R for P, Ca, and Mg, while the CT muscles did the same for Zn and Mn. Adding 5% WGE to broiler feed is optimal as it does not impair the nutritional value of the muscles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.