Accurate source localization is an important problem in many research areas as well as practical applications in wireless communications and acoustic signal processing. This paper presents a passive three-dimensional sound source localization (SSL) method that employs a geometric configuration of three soundfield microphones. Two methods for estimating the angle of arrival (AOA) and time difference of arrival (TDOA) are proposed based on Ambisonics A and B format signals. The closed-form solution for sound source location estimation based on two TDOAs and three AOAs is derived. The proposed method is evaluated by simulations and physical experiments in our anechoic chamber. Simulations demonstrate that the estimation method can theoretically obtain Cramér-Rao lower bound for a small Gaussian noise present in AOA and TDOA observations. Investigation on the uncertainty of TDOA and AOA measurements depending on the length of measurement interval is also conducted. Experimental results in terms of RMSE indicate that the proposed solution can be used to accurately find a 3D position of the sound source in free-field environment. Performance evaluation regarding the number of estimation steps shows that higher accuracy can be achieved by longer observations of stationary sound source. INDEX TERMS 3D sound source localization, angle of arrival, cramér-rao bound, soundfiled microphone, time difference of arrival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.