In this paper, presented is the state-of-the-art of energy Efficiency of residential buildings in Serbia. Special attention is paid to energy efficiency in already existing buildings. The average energy consumption in residential buildings in Serbia is over 150 kWhm -2 per year, while in developed European countries it is about 50 kWm -2 per year. In this paper examined is the contribution of ventilation losses, through the windows of low quality, regardless whether they are poorly made, or made from bad materials, or with no adequate glass. Besides ventilation losses, which are of major importance in our buildings, special attention is paid to transmission losses, which are consequence of the quality and energy efficiency of the facade. All of the above statements are proved by measurements obtained on a representative building of the Block 34 in New Belgrade, built in the eighties of the last century. In addition to measurements performed the calculation of energy consumption for heating during winter has been made. The results of two different methods of calculation of energy consumption for heating are compared with the values obtained by measuring.
Affected by undeniable climatic change, the temperature of the urban areas rises continually, increasing rapidly the energy problem of cities and amplifying the pollution problems. The thermal stress is increased, thus both the indoor and the outdoor thermal comfort levels are decreased, enhancing the health problems. Green roof implementation in the building envelope is strategy that provides heat island amelioration, thermal comfort for occupants and reduces energy consumption of buildings. Green living roofs are a passive cooling technique, which can stop the incoming solar radiation from reaching the building structure below. In this paper, we assessed the importance of the green roofs in providing environmental and building energy benefits, and brief investigation on the different configuration of the soil layer in the green roof assembly influences to the temperature of the roof surface was presented. Investigation was conducted for first phase of the living roof growth. Four cells were designed in SolidWorks software where the transient thermal study was performed in order to determine differences between the behavior of the conventional roof and three green roof types.
Optimal design of a borehole heat exchanger, as the outer part of a ground source heat pump heating system, requires information on the thermal properties of the soil. Those data, the effective thermal conductivity of the soil λeff and the average temperature of the soil T0, enable us to determine the necessary number and depth of boreholes. The determination of thermal conductivity of the soil in laboratory experiments does not usually coincide with the data under in-situ conditions. Therefore, an in-situ method of experimental determination of these parameters, the so-called thermal response test, is presented in this paper. In addition to the description of the experimental procedure and installation overview, the paper describes methods based on theory and presents their basic limitations, through the presentation of experimental data. [Acknowledgment. This paper is made in a scope of the project TR 33047 “Intelligent climate control systems to achieve energy efficient regime in the complex conditions of exploitation” funded by the Ministry of Education and Science of the Republic of Serbia.
This paper presents the part of the research that has been done at the Universities both in Belgrade and Thessaloniki, Greece, taking into account indoor environmental quality in office buildings and classrooms. The measurements that are presented were done in Process Equipment Design Laboratory at Aristotle University Thessaloniki, during March 2015. Indoor environmental quality regarding air temperature, relative humidity, and CO2 concentration in two representative offices is observed. The similar offices are located one on the north-east and the other one on the south-west side of the University building, so as to be representative of the orientation?s impact. Furthermore, the impact of natural ventilation on CO2 concentration and temperature is monitored, together with the offices? occupancy. Recommended parameters for indoor air quality are compared and discussed on the base of several standards: SRPS EN 15251:2010, ASHRAE standards 55 and 62.1, and ISO 7730. The main objectives, as set from these standards are discussed, together with the investigation results. [Projekat Ministarstva nauke Republike Srbije, br. 33047]
In this paper, the concept of sustainable development is viewed in the perspective of the relations, influences and interactions in the spheres of technology management and natural resource development. The managerial methods, techniques and tools strongly rely on the measurement capacities and on the support of sustainability performance indicators. This paper, hence, focuses on the identification of the set of sustainability indicators at the macro level of national economy. They have been identified according to their social, economic, industrial and ecological dimensions, the priorities set by their contribution to technological development. The elaborated set of sustainability indicators are at the base of the Objectives matrix model (OMM), additionally equipped with the borders and goals determined by ecological rationality and technological policy of sustainable development. The model is empirically tested with concrete data on air quality in Serbia, while the benchmark indicator values had been drawn from Denmark. The results obtained by implementing the OMM in Serbia represent a base for valuable conclusions. The cause-consequential interaction of technological development and natural resources shows the importance of an integral, holistic approach introducing a new concept of sustainable technology management. Abbreviations: OMM, Objectives matrix model; SD, sustainable development; STMD, sustainable technology management and development.Afr. J. Bus. Manage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.