The COVID-19 anthropause has impacted human activities and behaviour, resulting in substantial environmental and ecological changes. It has assisted in restoring the ecological systems by improving, for instance, air and water quality and decreasing the anthropogenic pressure on wildlife and natural environments. Notwithstanding, such improvements recessed back, even to a greater extent, when considering increased medical waste, hazardous disinfectants and other chemical compounds, and plastic waste disposal or mismanagement.
This work critically reviews the short- and long-term implications of measures against COVID-19 spreading, namely on human activities and different environmental compartments. Furthermore, this paper highlights strategies towards environmental restoration, as the recovery of the lost environment during COVID-19 lockdown suggests that the environmental degradation caused by humans can be reversible. Thus, we can no longer delay concerted international actions to address biodiversity, sustainable development, and health emergencies to ensure environmental resilience and equitable recovery.
Synthetic fibers enter wastewater treatment plants together with natural fibers, which may affect treatment efficiency, a fact not considered in previous studies. Therefore, the aim of the present study was to evaluate the efficiency of the coagulation/flocculation process for the removal of a mixture of textile fibers from different water matrices. Natural and synthetic fibers (100 mg/L; cotton, polyacrylonitrile, and polyamide) were added to a synthetic matrix, surface water and laundry wastewater and subjected to coagulation/flocculation experiments with ferric chloride (FeCl3) and polyaluminum chloride (PACl) under laboratory conditions. In the synthetic matrix, both coagulants were found to be effective, with FeCl3 having a lesser advantage, removing textile fibers almost completely from the water (up to 99% at a concentration of 3.94 mM). In surface water, all dosages had approximately similar high values, with the coagulant resulting in complete removal. In laundry effluent, the presence of surfactants is thought to affect coagulation efficiency. PACl was found to be effective in removing textile fibers from laundry wastewater, with the lowest removal efficiency being 89% and all dosages having similar removal efficiencies. Natural organic matter and bicarbonates showed a positive effect on the efficiency of FeCl3 in removing textile fibers from surface water. PACl showed better performance in coagulating laundry wastewater while surfactants had a negative effect on FeCl3 coagulation efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.