OBJECTIVE To develop a method based on CT angiography and the maximum slope model (MSM) to measure regional lung perfusion in anesthetized ponies. ANIMALS 6 ponies. PROCEDURES Anesthetized ponies were positioned in dorsal recumbency in the CT gantry. Contrast was injected, and the lungs were imaged while ponies were breathing spontaneously and while they were mechanically ventilated. Two observers delineated regions of interest in aerated and atelectatic lung, and perfusion in those regions was calculated with the MSM. Measurements obtained with a computerized method were compared with manual measurements, and computerized measurements were compared with previously reported measurements obtained with microspheres. RESULTS Perfusion measurements obtained with the MSM were similar to previously reported values obtained with the microsphere method. While ponies were spontaneously breathing, mean ± SD perfusion for aerated and atelectatic lung regions were 4.0 ± 1.9 and 5.0 ± 1.2 mL/min/g of lung tissue, respectively. During mechanical ventilation, values were 4.6 ± 1.2 and 2.7 ± 0.7 mL/min/g of lung tissue at end expiration and 4.1 ± 0.5 and 2.7 ± 0.6 mL/min/g of lung tissue at peak inspiration. Intraobserver agreement was acceptable, but interobserver agreement was lower. Computerized measurements compared well with manual measurements. CLINICAL RELEVANCE Findings showed that CT angiography and the MSM could be used to measure regional lung perfusion in dorsally recumbent anesthetized ponies. Measurements are repeatable, suggesting that the method could be used to determine efficacy of therapeutic interventions to improve ventilation-perfusion matching and for other studies for which measurement of regional lung perfusion is necessary.
OBJECTIVE To measure changes in pulmonary perfusion during pulsed inhaled nitric oxide (PiNO) delivery in anesthetized, spontaneously breathing and mechanically ventilated ponies positioned in dorsal recumbency. ANIMALS 6 adult ponies. PROCEDURES Ponies were anesthetized, positioned in dorsal recumbency in a CT gantry, and allowed to breathe spontaneously. Pulmonary artery, right atrial, and facial artery catheters were placed. Analysis time points were baseline, after 30 minutes of PiNO, and 30 minutes after discontinuation of PiNO. At each time point, iodinated contrast medium was injected, and CT angiography was used to measure pulmonary perfusion. Thermodilution was used to measure cardiac output, and arterial and mixed venous blood samples were collected simultaneously and analyzed. Analyses were repeated while ponies were mechanically ventilated. RESULTS During PiNO delivery, perfusion to aerated lung regions increased, perfusion to atelectatic lung regions decreased, arterial partial pressure of oxygen increased, and venous admixture and the alveolar-arterial difference in partial pressure of oxygen decreased. Changes in regional perfusion during PiNO delivery were more pronounced when ponies were spontaneously breathing than when they were mechanically ventilated. CLINICAL RELEVANCE In anesthetized, dorsally recumbent ponies, PiNO delivery resulted in redistribution of pulmonary perfusion from dependent, atelectatic lung regions to nondependent aerated lung regions, leading to improvements in oxygenation. PiNO may offer a treatment option for impaired oxygenation induced by recumbency.
OBJECTIVE To determine the impact of mechanical ventilation (MV) and perfusion conditions on the efficacy of pulse-delivered inhaled nitric oxide (PiNO) in anesthetized horses. ANIMALS 27 healthy adult horses. PROCEDURES Anesthetized horses were allocated into 4 groups: spontaneous breathing (SB) with low (< 70 mm Hg) mean arterial blood pressure (MAP; group SB-L; n = 7), SB with physiologically normal (≥ 70 mm Hg) MAP (group SB-N; 8), MV with low MAP (group MV-L; 6), and MV with physiologically normal MAP (group MV-N; 6). Dobutamine was used to maintain MAP > 70 mm Hg. Data were collected after a 60-minute equilibration period and at 15 and 30 minutes during PiNO administration. Variables included Pao2, arterial oxygen saturation and content, oxygen delivery, and physiologic dead space-to-tidal volume ratio. Data were analyzed with Shapiro-Wilk, Mann-Whitney U, and Friedman ANOVA tests. RESULTS Pao2, arterial oxygen saturation, arterial oxygen content, and oxygen delivery increased significantly with PiNO in the SB-L, SB-N, and MV-N groups; were significantly lower in group MV-L than in group MV-N; and were lower in MV-N than in both SB groups during PiNO. Physiologic dead space-to-tidal volume ratio was highest in the MV-L group. CONCLUSIONS AND CLINICAL RELEVANCE Pulmonary perfusion impacted PiNO efficacy during MV but not during SB. Use of PiNO failed to increase oxygenation in the MV-L group, likely because of profound ventilation-perfusion mismatching. During SB, PiNO improved oxygenation irrespective of the magnitude of blood flow, but hypoventilation and hypercarbia persisted. Use of PiNO was most effective in horses with adequate perfusion.
BackgroundHorses have been strongly selected for speed, strength, and endurance-exercise traits since the onset of domestication. As a result, highly specialized horse breeds have developed with many modern horse breeds often representing closed populations with high phenotypic and genetic uniformity. However, a great deal of variation still exists between breeds, making the horse particularly well suited for genetic studies of athleticism. To identify genomic regions associated with athleticism as it pertains to trotting racing ability in the horse, the current study applies a pooled sequence analysis approach using a unique Nordic horse model.ResultsPooled sequence data from three Nordic horse populations were used for FST analysis. After strict filtering, FST analysis yielded 580 differentiated regions for trotting racing ability. Candidate regions on equine chromosomes 7 and 11 contained the largest number of SNPs (n = 214 and 147, respectively). GO analyses identified multiple genes related to intelligence, energy metabolism, and skeletal development as potential candidate genes. However, only one candidate region for trotting racing ability overlapped a known racing ability QTL.ConclusionsNot unexpected for genomic investigations of complex traits, the current study identified hundreds of candidate regions contributing to trotting racing ability in the horse. Likely resulting from the cumulative effects of many variants across the genome, racing ability continues to demonstrate its polygenic nature with candidate regions implicating genes influencing both musculature and neurological development.Electronic supplementary materialThe online version of this article (10.1186/s12864-019-5484-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.