Engineering hierarchical vasculatures is critical for creating implantable functional thick tissues. Current approaches focus on fabricating mesoscale vessels for implantation or hierarchical microvascular in vitro models, but a combined approach is yet to be achieved to create engineered tissue flaps. Here, millimetric vessel‐like scaffolds and 3D bioprinted vascularized tissues interconnect, creating fully engineered hierarchical vascular constructs for implantation. Endothelial and support cells spontaneously form microvascular networks in bioprinted tissues using a human collagen bioink. Sacrificial molds are used to create polymeric vessel‐like scaffolds and endothelial cells seeded in their lumen form native‐like endothelia. Assembling endothelialized scaffolds within vascularizing hydrogels incites the bioprinted vasculature and endothelium to cooperatively create vessels, enabling tissue perfusion through the scaffold lumen. Using a cuffing microsurgery approach, the engineered tissue is directly anastomosed with a rat femoral artery, promoting a rich host vasculature within the implanted tissue. After two weeks in vivo, contrast microcomputer tomography imaging and lectin perfusion of explanted engineered tissues verify the host ingrowth vasculature's functionality. Furthermore, the hierarchical vessel network (VesselNet) supports in vitro functionality of cardiomyocytes. Finally, the proposed approach is expanded to mimic complex structures with native‐like millimetric vessels. This work presents a novel strategy aiming to create fully‐engineered patient‐specific thick tissue flaps.
Functional regeneration of complex large-scaled defects requires both softand hard-tissue grafts. Moreover, bone constructs within these grafts require an extensive vascular supply for survival and metabolism during the engraftment. Soft-tissue pedicles are often used to vascularize bony constructs. However, extensive autologous tissue-harvest required for the fabrication of these grafts remains a major procedural drawback. In the current work, a composite flap is fabricated using synthetic soft-tissue matrices and decellularized bone, combined in vivo to form de novo composite tissue with its own vascular supply. Pre-vascularization of the soft-tissue matrix using dental pulp stem cells (DPSCs) and human adipose microvascular endothelial cells (HAMECs) enhances vascular development within decellularized bones. In addition, osteogenic induction of bone constructs engineered using adipose derived mesenchymal stromal cells positively affects micro-capillary organization within the mineralized component of the neo-tissue. Eventually, these neo-tissues used as axial reconstructive flaps support long-term bone defect repair, as well as muscle defect bridging. The composite flaps described here may help eliminate invasive autologous tissue-harvest for patients in need of viable grafts for transplantation.
3D bioprinting holds great promise for tissue engineering, with extrusion bioprinting in suspended hydrogels becoming the leading bioprinting technique in recent years. In this method, living cells are incorporated within bioinks, extruded layer by layer into a granular support material followed by gelation of the bioink through diverse cross‐linking mechanisms. This approach offers high fidelity and precise fabrication of complex structures mimicking living tissue properties. However, the transition of cell mass mixed with the bioink into functional native‐like tissue requires post‐printing cultivation in vitro. An often‐overlooked drawback of 3D bioprinting is the nonuniform shrinkage and deformation of printed constructs during the post‐printing tissue maturation period, leading to highly variable engineered constructs with unpredictable size and shape. This limitation poses a challenge for the technology to meet applicative requirements. A novel technology of “print‐and‐grow,” involving 3D bioprinting and subsequent cultivation in κ‐Carrageenan‐based microgels (CarGrow) for days is presented. CarGrow enhances the long‐term structural stability of the printed objects by providing mechanical support. Moreover, this technology provides a possibility for live imaging to monitor tissue maturation. The “print‐and‐grow” method demonstrates accurate bioprinting with high tissue viability and functionality while preserving the construct's shape and size.
Microtia is a small, malformed external ear, which occurs at an incidence of 1–10 per 10 000 births. Autologous reconstruction using costal cartilage is the most widely accepted surgical microtia repair technique. Yet, the method involves donor-site pain and discomfort and relies on the artistic skill of the surgeon to create an aesthetic ear. This study employed novel tissue engineering techniques to overcome these limitations by developing a clinical-grade, 3D-printed biodegradable auricle scaffold that formed stable, custom-made neocartilage implants. The unique scaffold design combined strategically reinforced areas to maintain the complex topography of the outer ear and micropores to allow cell adhesion for the effective production of stable cartilage. The auricle construct was computed tomography (CT) scan-based composed of a 3D-printed clinical-grade polycaprolactone scaffold loaded with patient‐derived chondrocytes produced from either auricular cartilage or costal cartilage biopsies combined with adipose-derived mesenchymal stem cells. Cartilage formation was measured within the construct in vitro, and cartilage maturation and stabilization were observed 12 weeks after its subcutaneous implantation into a murine model. The proposed technology is simple and effective and is expected to improve aesthetic outcomes and reduce patient discomfort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.