A neutrosophic set was proposed as an approach to study neutral uncertain information. It is characterized through three memberships, T, I and F, such that these independent functions stand for the truth, indeterminate, and false-membership degrees of an object. The neutrosophic set presents a symmetric form since truth enrolment T is symmetric to its opposite false enrolment F with respect to indeterminacy enrolment I that acts as an axis of symmetry. The neutrosophic set was further extended to a Q-neutrosophic soft set, which is a hybrid model that keeps the features of the neutrosophic soft set in dealing with uncertainty, and the features of a Q-fuzzy soft set that handles two-dimensional information. In this study, we discuss some operations of Q-neutrosophic soft sets, such as subset, equality, complement, intersection, union, AND operation, and OR operation. We also define the necessity and possibility operations of a Q-neutrosophic soft set. Several properties and illustrative examples are discussed. Then, we define the Q-neutrosophic-set aggregation operator and use it to develop an algorithm for using a Q-neutrosophic soft set in decision-making issues that have indeterminate and uncertain data, followed by an illustrative real-life example. soft sets [27], complex neutrosophic soft expert sets [28,29] and time-neutrosophic soft sets [30]. Many researchers [23,[31][32][33][34][35][36] have constructed several aggregation operators, such as simplified neutrosophic prioritized aggregation operators, single-valued neutrosophic Dombi weighted aggregation operators, simplified neutrosophic weighted aggregation operators, interval neutrosophic exponential weighted aggregation operators, and used them in decision-making issues. Aggregation operators perform a vital role in multicriteria decision making (MCDM) issues whose principle target is to aggregate a collection of inputs to a single number. Thus, aggregation operators give us effective tools to handle neutrosophic data in the decision process.For a two-dimensional universal set, Adam and Hassan [37,38] introduced the Q-fuzzy soft set (Q-FSS) and multi-Q-FSS, which includes a Q-fuzzy soft aggregation operator that allows constructing more efficient decision-making methods. Broumi [39] presented the notion of the Q-intuitionistic fuzzy soft set (Q-IFSS), and defined some basic properties and basic operations. Actually, these notions cannot handle indeterminate data that appear in two universal sets. Inspired by this, Abu Qamar and Hassan [40] initiated the concept of the Q-neutrosophic soft set (Q-NSS) by upgrading the membership functions of the NSS to a two-dimensional entity. As a result, Q-NSS is premium to these models with three two-dimensional independent membership functions. Hence, this concept serves indeterminacy and two-dimensionality at the same time. Moreover, the Q-neutrosophic set (Q-NS) is basically an NS defined over a two-dimensional set. Thus, it has added advantages to NS by treating a two-dimensional universal set, which makes it mor...
The idea of the Q-neutrosophic soft set emerges from the neutrosophic soft set by upgrading the membership functions to a two-dimensional entity which indicate uncertainty, indeterminacy and falsity. Hence, it is able to deal with two-dimensional inconsistent, imprecise, and indeterminate information appearing in real life situations. In this study, the tools that measure the similarity, distance and the degree of fuzziness of Q-neutrosophic soft sets are presented. The definitions of distance, similarity and measures of entropy are introduced. Some formulas for Q-neutrosophic soft entropy were presented. The known Hamming, Euclidean and their normalized distances are generalized to make them well matched with the idea of Q-neutrosophic soft set. The distance measure is subsequently used to define the measure of similarity. Lastly, we expound three applications of the measures of Q-neutrosophic soft sets by applying entropy and the similarity measure to a medical diagnosis and decision making problems.
Q-neutrosophic soft sets are essentially neutrosophic soft sets characterized by three independent two-dimensional membership functions which stand for uncertainty, indeterminacy and falsity. Thus, it can be applied to two-dimensional imprecise, indeterminate and inconsistent data which appear in most real life problems. Relations are a suitable tool for describing correspondences between objects. In this study we introduce and discuss Q-neutrosophic soft relations, which can be discussed as a generalization of fuzzy soft relations, intuitionistic fuzzy soft relations, and neutrosophic soft relations. Q-neutrosophic soft relation is a sub Q-neutrosophic soft set of the Cartesian product of the Q-neutrosophic soft sets, in other words Q-neutrosophic soft relation is Q-neutrosophic soft sets in a Cartesian product of universes. We also present the notions of inverse, composition of Q-neutrosophic soft relations and functions along with some related theorems and properties. Reflexivity, symmetry, transitivity as well as equivalence relations and equivalence classes of Q-neutrosophic soft relations are also defined. Some properties of these concepts are presented and supported by real life examples. Finally, an algorithm to solve decision making problems using Q-neutrosophic soft relations is developed and verified by an example to show the efficiency of this method.
Neutrosophic triplet structure yields a symmetric property of truth membership on the left, indeterminacy membership in the centre and false membership on the right, as do points of object, centre and image of reflection. As an extension of a neutrosophic set, the Q-neutrosophic set was introduced to handle two-dimensional uncertain and inconsistent situations. We extend the soft expert set to generalized Q-neutrosophic soft expert set by incorporating the idea of soft expert set to the concept of Q-neutrosophic set and attaching the parameter of fuzzy set while defining a Q-neutrosophic soft expert set. This pattern carries the benefits of Q-neutrosophic sets and soft sets, enabling decision makers to recognize the views of specialists with no requirement for extra lumbering tasks, thus making it exceedingly reasonable for use in decision-making issues that include imprecise, indeterminate and inconsistent two-dimensional data. Some essential operations namely subset, equal, complement, union, intersection, AND and OR operations and additionally several properties relating to the notion of generalized Q-neutrosophic soft expert set are characterized. Finally, an algorithm on generalized Q-neutrosophic soft expert set is proposed and applied to a real-life example to show the efficiency of this notion in handling such problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.