Drought stress, being the inevitable factor that exists in various environments without recognizing borders and no clear warning thereby hampering plant biomass production, quality, and energy. It is the key important environmental stress that occurs due to temperature dynamics, light intensity, and low rainfall. Despite this, its cumulative, not obvious impact and multidimensional nature severely affects the plant morphological, physiological, biochemical and molecular attributes with adverse impact on photosynthetic capacity. Coping with water scarcity, plants evolve various complex resistance and adaptation mechanisms including physiological and biochemical responses, which differ with species level. The sophisticated adaptation mechanisms and regularity network that improves the water stress tolerance and adaptation in plants are briefly discussed. Growth pattern and structural dynamics, reduction in transpiration loss through altering stomatal conductance and distribution, leaf rolling, root to shoot ratio dynamics, root length increment, accumulation of compatible solutes, enhancement in transpiration efficiency, osmotic and hormonal regulation, and delayed senescence are the strategies that are adopted by plants under water deficit. Approaches for drought stress alleviations are breeding strategies, molecular and genomics perspectives with special emphasis on the omics technology alteration i.e., metabolomics, proteomics, genomics, transcriptomics, glyomics and phenomics that improve the stress tolerance in plants. For drought stress induction, seed priming, growth hormones, osmoprotectants, silicon (Si), selenium (Se) and potassium application are worth using under drought stress conditions in plants. In addition, drought adaptation through microbes, hydrogel, nanoparticles applications and metabolic engineering techniques that regulate the antioxidant enzymes activity for adaptation to drought stress in plants, enhancing plant tolerance through maintenance in cell homeostasis and ameliorates the adverse effects of water stress are of great potential in agriculture.
Maintenance of plant physiological functions under drought stress is normally considered a positive feature as it indicates sustained plant health and growth. This study was conducted to investigate whether plant growth-promoting rhizobacteria (PGPR) Bacillus subtilis HAS31 has potential to maintain potato growth and yield under drought stress. We analyzed trends of chlorophyll concentration, photosynthesis process, relative water content, osmolytes, antioxidants enzymes and oxidative stress, relative growth rate, tuber and aboveground biomass production in two potato varieties, Santae (drought-tolerant) and PRI-Red (drought-sensitive). Plants of both genotypes were treated with 100 g of HAS31 inoculant at 10 days after germination and exposed to different soil relative water contents (SRWC), including 80 ± 5% (well watered), 60 ± 5% (moderate stress) and 40 ± 5% SRWC (severe stress) for 7 days at tuber initiation stage (30 days after germination). The drought stress reduced plant relative growth rate, biomass production, leaf area, number of leaves and tubers, tuber weight, and final yield. The drought-stressed plants showed decline in chlorophyll contents, membrane stability, leaf relative water contents and photosynthetic rate. Under drought stress, enzymatic activity of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), contents of total soluble sugars, soluble proteins and proline increased. The application of PGPR reduced the impact of drought and maintained higher growth and physio-chemical traits of the plants. The plants with PGPR application showed higher relative growth rate, dry matter production, leaf area, number of tubers, tuber weight and yield as compared to plants without PGPR. The PGPR-HAS31 treated plants maintained higher photosynthetic process, contents of chlorophyll, soluble proteins, total soluble sugars, and enzymatic activities of CAT, POD and SOD as compared to plants without PGPR. The results of the study suggest that plant growth regulators have ability to sustain growth and yield of potato under drought stress by maintaining physiological functions of the plants.
There is a need for a more innovative fertilizer approach that can increase the productivity of agricultural systems and be more environmentally friendly than synthetic fertilizers. In this article, we reviewed the recent development and potential benefits derived from the use of nanofertilizers (NFs) in modern agriculture. NFs have the potential to promote sustainable agriculture and increase overall crop productivity, mainly by increasing the nutrient use efficiency (NUE) of field and greenhouse crops. NFs can release their nutrients at a slow and steady pace, either when applied alone or in combination with synthetic or organic fertilizers. They can release their nutrients in 40–50 days, while synthetic fertilizers do the same in 4–10 days. Moreover, NFs can increase the tolerance of plants against biotic and abiotic stresses. Here, the advantages of NFs over synthetic fertilizers, as well as the different types of macro and micro NFs, are discussed in detail. Furthermore, the application of NFs in smart sustainable agriculture and the role of NFs in the mitigation of biotic and abiotic stress on plants is presented. Though NF applications may have many benefits for sustainable agriculture, there are some concerns related to the release of nanoparticles (NPs) from NFs into the environment, with the subsequent detrimental effects that this could have on both human and animal health. Future research should explore green synthesized and biosynthesized NFs, their safe use, bioavailability, and toxicity concerns.
Salinity is one of the major issues that limits field crop productivity in an arid and semiarid environment. Therefore, two field trials were carried out over two seasons of 2018 and 2019 to investigate the enhancement of different methods of potassium application (i.e., recommended soil amendment (control; K2O), seed soaking (SS) and foliar spray (FS) in the form of potassium sulfate (K2SO4, 6 mM)) on antioxidant protection, physio-biochemical, yield and quality traits of soybean (cv. Giza 22) grown in normal (electrical conductivity; EC = 2.68 dS m−1) and saline soil (EC = 7.46 dS m−1). Physio-biochemical attributes (total chlorophyll, carotenoids, K+ and K+/Na+ ratios, performance index and catalase (CAT) activity), growth traits (i.e., shoot length, number and area of leaves plant−1 and shoot dry weight), yield and its components and seed quality (number of pods plant−1, 100-seed weight, seed yield ha−1 and seed protein and oil contents) were significantly decreased when soybean plants were grown in saline soil compared with those grown in normal soil. In contrast, activity of enzymatic antioxidants (i.e., superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione peroxidase (GPX)), contents of non-enzymatic antioxidants and osmoprotectants (i.e., total soluble sugars, free proline, ascorbic acid and α-tocopherol), Na+, Cl−, H2O2 and malondialdehyde (MDA) were increased in soybean plants grown in saline soil compared with normal soil. However, under salt-stressed conditions, potassium applied through SS or FS significantly enhanced all soybean growth, photosynthetic efficiency, K+ content, ratio of K+/Na+ and activity of CAT, SOD, APX and GPX as well as improved yield and quality traits, while potassium application did not affect the contents of non-enzymatic antioxidants and osmoprotectants. For instance, foliar potassium application (FS) increased seed yield ha−1 by 92.31% and protein content by 63.19% compared with the control under the salt stress condition. In addition, both applications of potassium significantly reduced Na+, Cl−, H2O2 and MDA contents in soybean plants compared with those obtained from control treatments. Exogenous application of K2SO4 was more effective than SS at improving soybean physio-biochemical attributes, yield and seed quality traits under soil-salinity stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.