The Internet of Things (IoT) has lately developed into an innovation for developing smart environments. Security and privacy are viewed as main problems in any technology's dependence on the IoT model. Privacy and security issues arise due to the different possible attacks caused by intruders. Thus, there is an essential need to develop an intrusion detection system for attack and anomaly identification in the IoT system. In this work, we have proposed a deep learning-based method Deep Belief Network (DBN) algorithm model for the intrusion detection system. Regarding the attacks and anomaly detection, the CICIDS 2017 dataset is utilized for the performance analysis of the present IDS model. The proposed method produced better results in all the parameters in relation to accuracy, recall, precision, F1-score, and detection rate. The proposed method has achieved 99.37% accuracy for normal class, 97.93% for Botnet class, 97.71% for Brute Force class, 96.67% for Dos/DDoS class, 96.37% for Infiltration class, 97.71% for Ports can class and 98.37% for Web attack, and these results were compared with various classifiers as shown in the results.
Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for the diagnosis and prognosis of heart disease. The main objective of the proposed research is to classify data and predict heart disease using medical data and medical images. The proposed model is a medical data classification and prediction model that operates in two stages. If the result from the first stage is efficient in predicting heart disease, there is no need for stage two. In the first stage, data gathered from medical sensors affixed to the patient’s body were classified; then, in stage two, echocardiogram image classification was performed for heart disease prediction. A hybrid linear discriminant analysis with the modified ant lion optimization (HLDA-MALO) technique was used for sensor data classification, while a hybrid Faster R-CNN with SE-ResNet-101 modelwass used for echocardiogram image classification. Both classification methods were carried out, and the classification findings were consolidated and validated to predict heart disease. The HLDA-MALO method obtained 96.85% accuracy in detecting normal sensor data, and 98.31% accuracy in detecting abnormal sensor data. The proposed hybrid Faster R-CNN with SE-ResNeXt-101 transfer learning model performed better in classifying echocardiogram images, with 98.06% precision, 98.95% recall, 96.32% specificity, a 99.02% F-score, and maximum accuracy of 99.15%.
In this study, a survey of multiple sclerosis (MS) classification and segmentation process is presented, which is based on magnetic resonance imaging. Knowledge of MS lesions is gained by determining the number of sample lesions in order that the lesion development level can be followed precisely; therefore, the effects of pharmaceuticals in medical tests can be accurately assessed. Accurate recognition of MS lesions in magnetic resonance images is an additionally complex process because of their changing shapes and sizes which can be very difficult to identify based on anatomical positions in various subjects. This can be determined by precise segmentation; manual segmentation would be very difficult to perform as it requires high level knowledge which takes additional time. Inter-and intra-expert variability need to be determined in order to perform the automated segmentation of lesions. The principal aim of this survey effort is to provide an analysis of the different categorization and segmentation methods and their techniques. This survey work will be valuable for researchers working in MS by considering and carefully evaluating the past work. The benefits and drawbacks of existing techniques are reviewed and the issue of MS lesion segmentation and classification is elucidated.
Coronavirus has affected millions of people worldwide, with the rate of infected people still increasing. The virus is transmitted between people through direct, indirect, or close contact with infected people. To help prevent the social transmission of COVID-19, this paper presents a new smart social distance system that allows individuals to keep social distances between others in indoor and outdoor environments, avoiding exposure to COVID-19 and slowing its spread locally and across the country. The proposed smart monitoring system consists of a new smart wearable prototype of a compact and low-cost electronic device, based on human detection and proximity distance functions, to estimate the social distance between people and issue a notification when the social distance is less than a predefined threshold value. The developed social system has been validated through several experiments, and achieved a high acceptance rate (96.1%) and low localization error (<6 m).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.