Demand for data security is increasing as information technology advances. Encryption technology based on biometrics has advanced significantly to meet more convenient and secure needs. Because of the stability of face traits and the difficulty of counterfeiting, the iris method has become an essential research object in data security research. This study proposes a revolutionary face feature encryption technique that combines picture optimization with cryptography and deep learning (DL) architectures. To improve the security of the key, an optical chaotic map is employed to manage the initial standards of the 5D conservative chaotic method. A safe Crypto General Adversarial neural network and chaotic optical map are provided to finish the course of encrypting and decrypting facial images. The target field is used as a "hidden factor" in the machine learning (ML) method in the encryption method. An encrypted image is recovered to a unique image using a modernization network to achieve picture decryption. A region-of-interest (ROI) network is provided to extract involved items from encrypted images to make data mining easier in a privacy-protected setting. This study’s findings reveal that the recommended implementation provides significantly improved security without sacrificing image quality. Experimental results show that the proposed model outperforms the existing models in terms of PSNR of 92%, RMSE of 85%, SSIM of 68%, MAP of 52%, and encryption speed of 88%.
Accurate Evapotranspiration for saline soils (ETs) is important as well as challenging for the reclamation of saline soils through an effective leaching process. Evapotranspiration (ET) by FAO-56 Penman-Monteith standard method is complex, especially for saline soils. Moreover, existing studies focus on the use of the Internet of Things (IoT) and machine learning-enabled smart and precision irrigation water recommendation systems along with the ET estimation by limited parameters. The ETs for saline soils are also equally important for the reclamation of saline soils, which is ignored by the existing literature. The study proposed IoT and machine leaching-based architecture of context-aware monthly ETs estimations for saline soil reclamation with the effective leaching process. The IoT-enabled crop field contexts in terms of crop field temperature, soil salinity, and irrigation water salinity are used as input features to the Long Short-Term Memory (LSTM) and ensembled LSTM models for monthly ETs predictions. The performance of the proposed solution is observed in terms of the accuracy of the machine learning models along with the comparison against the FAO-56 PM-based standard method. The implementation of the proposed solution reveals that the ensembled LSTM-based approach for ETs is more accurate as compared to the LSTM model with accuracies of 92 and 90% for the training and validation datasets, respectively. The predictions made by the ensembled LSTM are more in line with the FAO-56 PM-based method with a Pearson correlation of 0.916 as compared to LSTM models. The implementation of the proposed solution in real-time environments reveals that the proposed solution is more effective in reducing the soil salinity as compared to the traditional method.
Fruits significantly impact everyday living, i.e., Citrus fruits. Numerous fruits have a solid nutritious value and are packed with multivitamins and trace components. Citrus fruits are delicate and susceptible to many diseases and infections. Many researchers have suggested deep and machine learning-based fruit disease detection and classification models. This research presents a precise fruit disease identification model based on context data fusion with Faster-CNN in an edge computing environment. The goal is to develop an accurate, efficient, and trustable fruit disease detection model, a critical component of autonomous food production in a robotic edge platform. This research examines and explores four different diseases of Citrus fruits using CNN deep learning models to be adopted as edge computing solutions. Identification of citrus diseases such as cankers black spot, greening, scab, melanosis, and healthy citrus fruits are implemented using the proposed sequential model without pruning, with pruning having different sparsity levels followed by post quantization. Through the transfer learning method, this model is optimized for the assignment of fruit disease detection employing visuals from two patterns: Near-infrared (NIFR) and RGB. Early and late data fusion techniques for integrating multi-model (NIFR and RGB) facts are evaluated. The accuracy obtained from the proposed model for the canker disease is 97%, scab 95%, melanosis 99%, Greening 97%, Black spot 97% and healthy 97%. In this paper, the results of the proposed model are compared and evaluated with the sparsity levels of 50–80%, 60–90%, 70–90%, and 80–90% pruning and also obtained the results of post-quantization on each level. The results show that the model size with 60–90% pruning can be counteracted to the 47.64 of the baseline model without significant loss of accuracy. Moreover, post-quantization can reduce the 60–90% pruning from 28.16 to 8.72. In addition to enhanced precision, the above initiative is much faster to implement for new fruit diseases because it needs bounding box annotation instead of pixel-level annotation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.