Deep neural networks (DNNs) have successfully delivered cutting-edge performance in several fields. With the broader deployment of DNN models on critical applications, the security of DNNs has become an active and yet nascent area. Attacks against DNNs can have catastrophic results, according to recent studies. Poisoning attacks, including backdoor attacks and Trojan attacks, are one of the growing threats against DNNs. Having a wide-angle view of these evolving threats is essential to better understand the security issues. In this regard, creating a semantic model and a knowledge graph for poisoning attacks can reveal the relationships between attacks across intricate data to enhance the security knowledge landscape. In this paper, we propose a DNN poisoning attack ontology (DNNPAO) that would enhance knowledge sharing and enable further advancements in the field. To do so, we have performed a systematic review of the relevant literature to identify the current state. We collected 28,469 papers from the IEEE, ScienceDirect, Web of Science, and Scopus databases, and from these papers, 712 research papers were screened in a rigorous process, and 55 poisoning attacks in DNNs were identified and classified. We extracted a taxonomy of the poisoning attacks as a scheme to develop DNNPAO. Subsequently, we used DNNPAO as a framework by which to create a knowledge base. Our findings open new lines of research within the field of AI security.
Deep neural networks (DNN) have successfully delivered a cutting-edge performance in several fields. With the broader deployment of DNN models on critical applications, the security of DNNs becomes an active and yet nascent area. Attacks against DNNs can have catastrophic results, according to recent studies. Poisoning attacks, including backdoor and Trojan attacks, are one of the growing threats against DNNs. Having a wide-angle view of these evolving threats is essential to better understand the security issues. In this regard, creating a semantic model and a knowledge graph for poisoning attacks can reveal the relationships between attacks across intricate data to enhance the security knowledge landscape. In this paper, we propose a DNN Poisoning Attacks Ontology (DNNPAO) that would enhance knowledge sharing and enable further advancements in the field. To do so, we have performed a systematic review of the relevant literature to identify the current state. We collected 28,469 papers from IEEE, ScienceDirect, Web of Science, and Scopus databases, and from these papers, 712 research papers were screened in a rigorous process, and 55 poisoning attacks in DNNs were identified and classified. We extracted a taxonomy of the poisoning attacks as a scheme to develop DNNPAO. Subsequently, we used DNNPAO as a framework to create a knowledge base. Our findings open new lines of research within the field of AI security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.