Resilience is the capability of a system to adjust its functionality during a disturbance or perturbation. The present work attempts to quantify resilience as a function of reliability, vulnerability, and maintainability. The approach assesses proactive and reactive defense mechanisms along with operational factors to respond to unwanted disturbances and perturbation. This article employs a Bayesian network format to build a resilience model. The application of the model is tested on hydrocarbon-release scenarios during an offloading operation in a remote and harsh environment. The model identifies requirements for robust recovery and adaptability during an unplanned scenario related to a hydrocarbon release. This study attempts to relate the resilience capacity of a system to the system's absorptive, adaptive, and restorative capacities. These factors influence predisaster and postdisaster strategies that can be mapped to enhance the resilience of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.