Nylon is a human‐made material and has been applied in many industrial fields. This literature review explores the use of nylon in biomedical applications and discusses the properties and three‐dimensional (3D) printability of this material. Nylon is studied due to its versatility as an engineering plastic that can be easily transformed into fibers, films, and molded parts. Due to nylon's biocompatible nature, it has desirable chemical stability and tunable mechanical properties making this material and its derivatives widely used as sutures, catheters, dentures, and so on. However, the interactions between nylon and human body tissues have yet to be fully understood. Nevertheless, nylon is hybridized with different materials and used as skin dressings. In recent years, nylon composites have been actively researched in tissue engineering as an alternative to metallic implants with an appropriate bioactivity potential for bone growth. As nylon is supposed to be in contact with the tissue for a long time, hence researchers are developing antimicrobial strategies for the nylon materials to even promote their potential a step further. The 3D printing of nylon is currently confined to specific applications due to the printing technology's current limitations.
Tracheal disorders can usually reduce the free lumen diameter or wall stiffness, and hence limit airflow. Trachea tissue engineering seems a promising treatment for such disorders. The required mechanical compatibility of the prepared scaffold with native trachea necessitates investigation of the mechanical behavior of the human trachea. This study aimed at mechanical characterization of human tracheas and comparing the results based on age and gender. After isolating 30 human tracheas, samples of tracheal cartilage, smooth muscle, and connective tissue were subjected to uniaxial tension to obtain force-displacement curves and calculate stress-stretch data. Among several models, the Yeoh and Mooney-Rivlin hyperelastic functions were best able to describe hyperelastic behavior of all three tracheal components. The mean value of the elastic modulus of human tracheal cartilage was calculated to be 16.92 ± 8.76 MPa. An overall tracheal stiffening with age was observed, with the most considerable difference in the case of cartilage. Consistently, we noticed some histological alterations in cartilage and connective tissue with aging, which may play a role in age-related tracheal stiffening. No considerable effect of gender on the mechanical behavior of tracheal components was observed. The results of this study can be applied in the design and fabrication of trachea tissue engineering scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.