Improving energy efficiency and reducing the cost of creating an electrical complex of autonomous power supply for an oil-producing enterprise is an urgent problem and requires a rational solution. The goal is the construction of energy-efficient electrical systems of autonomous power supply for oil-producing enterprises, leading to a reduction in the unit cost of electricity per unit of production. A methodology for constructing an autonomous power supply system for an oil producing enterprise, optimized in length and number of generation centers is present. The results presented in the work were obtained using methods of the theory of electric and magnetic circuits, theory of electric drive, methods of optimization of power supply systems, methods of mathematical and computer modeling. The configuration of the power supply system of oil producing enterprises and the efficiency of its work is analyze. To test the efficiency of the methodology, the power supply system of an oil producing enterprise is simulate in the RTDS software package. The results of the work were introduced and used in the creation of energy-efficient electrical systems for autonomous power supply to oil-producing enterprises based on autonomous diesel generators and optimized by the length of power lines and the number of generation centers. Implementation of the results of the work allows reducing the specific energy consumption per unit of extracted products and reducing the cost of building an energy-efficient electrical complex of autonomous power supply for oil-producing enterprises.
Annotation: There are various types of electrical equipment used in the extraction of oil at the Rumaila field, with an average voltage of 11 kV and a low voltage of 0.4 kV. The most common elements in this class are transformers and reactors, engines and gas discharge lamps. All of this equipment consumes reactive power and reduces the value of the power factor. (Power factor is the ratio of kW to kVA). The closer the power factor to the maximum possible value of 1, the greater the benefit for the consumer and supplier. In case of low power factor, the current will be increased, and this high current will lead to (large line losses, an increase in the nominal total power of kVA and overhaul dimensions of electrical equipment, deterioration in voltage regulation process and an increase in voltage drop, a decrease in efficiency).Power factor improvement allows the use of smaller transformers, switchgear and cables, etc. as well as reducing power losses and voltage drop in an installation. Improving the power factor of an installation requires a bank of capacitors which acts as a source of reactive energy. These arrangements provide reactive energy compensation. In Rumila, An improvement of the power factor of an installation presents several technical and economic advantages, notably in the reduction of electricity bills, we save (685.854.007 Iraqi Dinar= 550.000 $) for one month . All this work takes 6 to 12 month. . Optimize the performance of electrical equipment in gas separation stations (degassing station DS) and electrical submersible pumps of oil equipment for oil Rumaila field.
Numerous oil wells within Rumaila field contain Electrical Submersible Pumps (ESPs). ESPs are utilised to maximise the oil production from existing wells by providing artificial lift where pressure is low, which helps maintain oil production levels. The number of ESPs installed throughout the Rumaila. Field is growing consistently to sustain oil field production. Due to the remote locations for each of the ESPs the current strategy is to supply power to ESPs using individual diesel engine generators located at each remote ESP well site. This is an inefficient design, as individual diesel engines are resource intensive due to maintenance and frequent diesel filling. The generators are also a source of significant unreliability causing ESP shutdowns/trips resulting in extended downtime. Given the above a Pre-FEED has been carried out considering supplying ESPs using OHTL's supplying electrical power from EPP to ESPs in Area C. by uses parallel operation of diesel Generators , we could to constrict 124 from 184 and use 60 only ,by this we get high economic gain and technique, in additional that environmental protection by decreasing pollution. Optimal operation of electrical power generators for oil wells operated by artificial lifting at rumila field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.