Abstract-there has been a strong push recently to examine biological scale simulations of neuromorphic algorithms to achieve stronger inference capabilities. This paper presents a set of piecewise linear spiking neuron models, which can reproduce different behaviors, similar to the biological neuron, both for a single neuron as well as a network of neurons. The proposed models are investigated, in terms of digital implementation feasibility and costs, targeting large scale hardware implementation.Hardware synthesis and physical implementations on FPGA show that the proposed models can produce precise neural behaviors with higher performance and considerably lower implementation costs compared with the original model. Accordingly, a compact structure of the models which can be trained with supervised and unsupervised learning algorithms has been developed. Using this structure and based on a spike rate coding, a character recognition case study has been implemented and tested.Index Terms-Spiking Neural networks, Piecewise Linear Model, Field Programmable Gate Array (FPGA), Spike Rate Learning.
This paper presents a modified astrocyte model that allows a convenient digital implementation. This model is aimed at reproducing relevant biological astrocyte behaviors, which provide appropriate feedback control in regulating neuronal activities in the central nervous system. Accordingly, we investigate the feasibility of a digital implementation for a single astrocyte and a biological neuronal network model constructed by connecting two limit-cycle Hopf oscillators to an implementation of the proposed astrocyte model using oscillator-astrocyte interactions with weak coupling. Hardware synthesis, physical implementation on field-programmable gate array, and theoretical analysis confirm that the proposed astrocyte model, with considerably low hardware overhead, can mimic biological astrocyte model behaviors, resulting in desynchronization of the two coupled limit-cycle oscillators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.