The aim of the present experimental work is to determine the stability limits of Taylor cells by expanding and compressing the cells. The investigation was performed under laminar flow condition with a wide gap between an inner rotating cylinder and outer stationary cylinder. In order to allow the expansion and compression of the cells, the test rig was designed with a sliding upper end plate and a fixed lower end plate. The objectives are to determine the maximum and minimum size limits of each number of cells as well as the stability margin of them. Since, unstable cells have various oscillations and time dependent structures which change the behavior of the flow; the investigations of the stability limits is quite necessary to avoid the possible generation of unstable cells. In addition, the results are used to detect the number of cells that can be generated in the gap at different fluid column lengths. A stability map, locating the stability state of all possible numbers of cells, is assigned in the results. The map provides overlap zones between stable cells, in which the operating conditions will always lead to stable cells, even if the number of cells is changed by changing the initial conditions. Moreover, a rare phenomenon was observed during the compression process when the cells jumps unusually from six to two cells without passing through the fourcell mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.