Being incident and polarization angle insensitive are crucial characteristics of metamaterial perfect absorbers due to the variety of incident signals. In the case of incident angles insensitivity, facing transverse electric (TE) and transverse magnetic (TM) waves affect the absorption ratio significantly. In this scientific report, a crescent shape resonator has been introduced that provides over 99% absorption ratio for all polarization angles, as well as 70% and 93% efficiencies for different incident angles up to
for TE and TM polarized waves, respectively. Moreover, the insensitivity for TE and TM modes can be adjusted due to the semi-symmetric structure. By adjusting the structure parameters, the absorption ratio for TE and TM waves at
has been increased to 83% and 97%, respectively. This structure has been designed to operate at 5 GHz spectrum to absorb undesired signals generated due to the growing adoption of Wi-Fi networks. Finally, the proposed absorber has been fabricated in a
array structure on FR-4 substrate. Strong correlation between measurement and simulation results validates the design procedure.
With rapidly growing adoption of wireless technologies, requirements for the design of a miniature wideband multi‐resonators are increasing. In this study, a compact fractal‐based metamaterial structure with lumped resistors is described. The structure of the authors proposed absorber is a combination of Sierpinski curve and Minkowski fractal. The new combination provides larger capacitance and inductance in the system enabling perfect absorption at lower frequencies. The final structure with dimensions of 20 × 20 × 1.6 mm3 and an air gap of 12.5 mm provides three main resonances at frequencies of 2.1, 5.1, and 12.8 GHz with bandwidth (absorption ratio over 90%) of 840 MHz, 1.05 GHz, and 910 MHz, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.