Background:Morphine withdrawal usually results in undesired outcomes, despite partial benefits of alternative medication such as methadone, because of the lack of mental sedation during the withdrawal period, may not lead to the desired result. In this study, forced exercise by treadmill is used to manage morphine dependence in animal model.Materials and Methods:Forty adult male mice were divided into 5 groups, from which 4 groups became dependent by increasing daily doses of morphine for 6 days (20-45 mg/kg, SC). Afterwards, the animals were treated for 21 days by either of the following protocol: Positive control (dependent) received once daily 45 mg/kg of morphine sulfate (SC) for 21 day, group under treatment by clonidine (0.4 mg/kg, SC) for 21 day group under treatment by forced exercise by treadmill for 21 day, group under treatment by combination of clonidine (0.4 mg/kg, SC) and forced exercise by treadmill for 21day and the negative control group(independent) received saline injection like other groups. Each of this administration was injected at 8 AM. Finally, in the test day (day 28), all animals received a single dose of naloxone (3 mg/kg, SC) at 8 AM and then were observed for withdrawal signs, and Total Withdrawal Score (TWS) was determined as described previously. After withdrawal sign evaluation for evaluation of stress level of dependent mice, blood cortisol and glucose level were measured in non-fasting situations well.Results:This study showed that TWS significantly decreased in all treatment groups in comparison with positive control group (P < 0.001). Moreover, blood cortisol and glucose level significantly decreased in group under treatment by clonidine (0.4 mg/kg) and group under treatment by combination of clonidine (0.4 mg/kg) and forced exercise by treadmill groups in comparison with control positive (dependent) (P < 0.05).Conclusion:This study suggested that forced exercise can be useful as adjunct therapy in dependent people and can ameliorate side effects and stress situation of withdrawal syndrome periods.
To date, several small molecule inhibitors and monoclonal-antibodies (like ICR-62) have been used to treat tumors over-expressing epidermal growth factor receptor (EGFR). However, the limitations associated with these conventional applications accentuate the necessity of alternative approaches. Mimotopes as compelling molecular tools could rationally be employed to circumvent these drawbacks. In the present study, an M13 phage displaying ICR-62 binding peptide mimotope is exploited as a vaccine candidate. It exhibited high affinity towards ICR62 and polyclonal anti-P-BSA antibodies. Following the mice immunization, phage-based mimotope vaccine induced humoral immunity. Elicited anti-EGFR mimotope antibodies were detected using ELISA method. Moreover, the phage vaccine was tested on the Lewis lung carcinoma mice model to investigate the prophylactic and therapeutic effects. The tumor volume was measured and recorded in different animal groups to evaluate the anti-tumor effects of the vaccine. Our data indicate that the reported phage-based mimotope could potentially elicit specific antibodies resulting in low titers of EGFR-specific antibodies and reduced tumor growth. However, in vivo experiments of prophylactic or therapeutic vaccination showed no specific advantage. Furthermore, phage-mimotope vaccine might be a promising approach in the field of cancer immunotherapy.
One of the proposed approaches in cancer therapy is to induce and direct the patient's own immune system against cancer cells. In this study, we determined the epitope mapping of the rat anti-human epidermal growth factor receptor (EGFR) monoclonal antibody ICR-62 using a phage display of random peptide library and identified a 12 amino acids peptide, which was recognized as a mimotope. The peptide was synthesized and conjugated to bovine serum albumin (BSA) as carrier protein (P-BSA). We have shown that ICR-62 can react specifically with P-BSA as well as native EGFR. Two rabbits were immunized either by BSA or P-BSA and the rabbits IgGs were purified and examined for binding to the antigens, mimotope and the EGFR protein purified from the EGFR overexpressing A431 cell line. We showed that the rabbit IgG generated against the mimotope is capable of inhibiting the growth of A431 cells by 15%, but does not have any effect on the growth of EGFR-negative MDA-MB-453 cell line in vitro. Our results support the need for further investigations on the potential of vaccination with either mimotope of the EGFR or epitope displayed on the surface of phage particles for use in active immunotherapy of cancer.
Over-expression of epidermal growth factor receptor (EGFR) has been reported in a number of human malignancies. Strong expression of this receptor has been associated with poor survival in many such patients. Active immunizations that elicit antibodies of the desired type could be an appealing alternative to conventional passive immunization. In this regard, a novel recombinant peptide vaccine capable of prophylactic and therapeutic effects was constructed. A novel fusion recombinant peptide base vaccine consisting of L2 domain of murine extra-cellular domain-EGFR and EGFR mimotope (EM-L2) was constructed and its prophylactic and therapeutic effects in a Lewis lung carcinoma mouse (C57/BL6) model evaluated. Constructed recombinant peptide vaccine is capable of reacting with anti-EGFR antibodies. Immunization of mice with EM-L2 peptide resulted in antibody production against EM-L2. The constructed recombinant peptide vaccine reduced tumor growth and increased the survival rate. Designing effective peptide vaccines could be an encouraging strategy in contemporary cancer immunotherapy. Investigating the efficacy of such cancer immunotherapy approaches may open exciting possibilities concerning hyperimmunization, leading to more promising effects on tumor regression and proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.