We use a hybrid local meshless method to solve the distributed optimal control problem of a system governed by parabolic partial differential equations with Caputo fractional time derivatives of order α ∈ (0, 1]. The presented meshless method is based on the linear combination of moving least squares and radial basis functions in the same compact support, this method will change between interpolation and approximation. The aim of this paper is to solve the system of coupled fractional partial differential equations, with necessary and sufficient conditions, for fractional distributed optimal control problems using a combination of moving least squares and radial basis functions. To keep matters simple, the problem has been considered in the one-dimensional case, however the techniques can be employed for both the two- and three-dimensional cases. Several test problems are employed and results of numerical experiments are presented. The obtained results confirm the acceptable accuracy of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.