This paper describes the development of a new geoid-based vertical datum from airborne gravity data, by the Department of Survey and Mapping Malaysia, on land and in the South China Sea out of the coast of East Malaysia region, covering an area of about 610,000 square kilometres. More than 107,000 km flight line of airborne gravity data over land and marine areas of East Malaysia has been combined to provide a seamless land-to-sea gravity field coverage; with an estimated accuracy of better than 2.0 mGal. The iMAR-IMU processed gravity anomaly data has been used during a 2014-2016 airborne survey to extend a composite gravity solution across a number of minor gaps on selected lines, using a draping technique. The geoid computations were all done with the GRAVSOFT suite of programs from DTU-Space. EGM2008 augmented with GOCE spherical harmonic model has been used to spherical harmonic degree N = 720. The gravimetric geoid first was tied at one tide-gauge (in Kota Kinabalu, KK2019) to produce a fitted geoid, my_geoid2017_fit_kk. The fitted geoid was offset from the gravimetric geoid by +0.852 m, based on the comparison at the tide-gauge benchmark KK2019. Consequently, orthometric height at the six other tide gauge stations was computed fromand GPS-levelling heights (H GPS Lev ) at the six tide gauge locations indicate RMS height difference of 2.6 cm. The final gravimetric geoid was fitted to the seven tide gauge stations and is known as my_geoid2017_fit_east. The accuracy of the gravimetric geoid is estimated to be better than 5 cm across most of East Malaysia land and marine areas.
Malaysia is located at the stable part of the tec-tonic Sundaland platelet in SE Asia. The platelet is surrounded in almost every direction by tectonically active convergent boundaries, at which the Philippine Sea, the Australian and the Indian Plates are subducting respectively from the East, South and West.The current Malaysia geodetic reference frame called MGRF2000 is a static reference frame and hence did not incorporate the effects of plate motion and the ensuing deformation from (megath-rust) earthquakes. To prevent degradation of Continuously Operating Reference Station (CORS) coordinates, a new time-dependent national reference frame was developed. Taking advantage of the availability of the GNSS data of the CORS network in Malaysia, notably the Malaysia Active GPS System (MASS) and Malaysia Real-Time Kinematic GNSS Network (MyRTKnet), a more accurate and robust Malaysian geodetic reference frame was determined, fully aligned and compatible with ITRF2014. The cumulative solution obtained from stacking Malaysian CORS position time series formed the basis of the new MGRF2020 realization. It consists of 100+ station positions at epoch 2020.0, station velocities and Post-Seismic Deformation (PSD) parametric models for stations subjected to major earthquakes. The (1999-2018) position time series exhibit Weighted Mean Root Square (WRMS) values of 3.0, 3.2 and 7.6 mm in respectively the East, North and Vertical components. A new semi-kinematic geodetic datum (GDM2020) for Malaysia, useable for GIS, mapping and cadastre applications is proposed to replace the existing static datum (GDM2000). A transformation suite to convert the spatial databases from GDM2000 to GDM2020 was also developed.
The Peninsular Malaysia Geodetic Vertical Datum 2000 (PMGVD2000) inherited several deficiencies due to offsets between local datums used, levelling error propagations, land subsidence, sea level rise, and sea level slopes along the southern half of the Malacca Strait on the west coast and the South China Sea in the east coast of the Peninsular relative to the Port Klang (PTK) datum point. To cater for a more reliable elevation-based assessment of both sea level rise and coastal flooding exposure, a new epoch-based height reference system PMGVD2022 has been developed. We have undertaken the processing of more than 30 years of sea level data from twelve tide gauge (TG) stations along the Peninsular Malaysia coast for the determination of the relative mean sea level (RMSL) at epoch 2022.0 with their respective trends and incorporates the quantification of the local vertical land motion (VLM) impact. PMGVD2022 is based on a new gravimetric geoid (PMGeoid2022) fitted to the RMSL at PTK. The orthometric height is realised through the GNSS levelling concept H = hGNSS–Nfit_PTK–NRMDT, where NRMDT is a constant offset due to the relative mean dynamic ocean topography (RMDT) between the fitted geoid at PTK and the local MSL datums along the Peninsular Malaysia coast. PMGVD2022 will become a single height reference system with absolute accuracies of better than ±3 cm and ±10 cm across most of the land/coastal area and the continental shelf of Peninsular Malaysia, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.