This paper considers linear rational expectations models from the linear systems point of view. Using a generalization of the Wiener-Hopf factorization, the linear systems approach is able to furnish very simple conditions for existence and uniqueness of both particular and generic linear rational expectations models. To illustrate the applicability of this approach, the paper characterizes the structure of stationary and cointegrated solutions, including a generalization of Granger’s representation theorem.
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
This paper extends multivariate Granger causality to take into account the subspaces along which Granger causality occurs as well as long run Granger causality. The properties of these new notions of Granger causality, along with the requisite restrictions, are derived and extensively studied for a wide variety of time series processes including linear invertible process and VARMA. Using the proposed extensions, the paper demonstrates that: (i) mean reversion in L 2 is an instance of long run Granger non-causality, (ii) cointegration is a special case of long run Granger non-causality along a subspace, (iii) controllability is a special case of Granger causality, and finally (iv) linear rational expectations entail (possibly testable) Granger causality restriction along subspaces. JEL Classification: C10, C32, C51.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.