Basil (Ocimum basilicum L.) is the mucilaginous native plant and its seeds have a high amount of mucilage (gums) with outstanding useful characteristics that are comparable with marketable industrial gums. BSM is a gum extracted from this seeds using water extraction (Salehi, 2019; Zameni et al., 2015). Major properties of BSM as a new source of gum have been newly reported (Salehi, 2020a).
Radioactive particle tracking is a nonintrusive technique that has been successfully used to study the flow dynamics in a wide range of reactors and blenders. However, it is still limited to the tracking of only one tracer at a time. A multiple radioactive particle tracking (MRPT) technique that can determine the trajectory of two free or restricted (attached to the same particle) moving tracers in a system is introduced. The accuracy (<5 mm) and precision (<5 mm) of the proposed technique is evaluated by tracking two stationary tracers and two moving tracers. The results confirm the reliability and validity of the MRPT technique when the two tracers have the same isotope and the distance between them is not too small (>2 cm). The tracking of two sticking tracers at the two ends of a cylindrical particle in a rotating drum is also considered to illustrate the potential of this characterization method.
Polysaccharide-based edible coating can be useful as a pretreatment for drying since it prevents the oxidation of nutritional compounds, thereby improving the quality of dried products. In this study, the effects of polysaccharide coating (xanthan and balangu seed gums) on the drying kinetics of apricot slices were investigated. In addition, genetic algorithm-artificial neural network (GA-ANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used for prediction of drying time (DT) and moisture content (MC) of coated apricot slices in an infrared (IR) dryer. The GA-ANN and ANFIS were fed with two inputs of IR radiation intensity (150, 250, and 375 W) and the distance of slices from lamp surface (5, 7.5, and 10 cm) for prediction of average DT. Also, to predict the MC, these models were fed with three inputs of IR power, lamp distance, and treatment time. The developed GA-ANN, which included seven hidden neurons, predicted the DT of apricot slices with a correlation coefficient (r) of 0.970. Also, the GA-ANN model with nine neurons in one hidden layer predicts the MC with a high r-value (r = 0.999). The calculated r-values for prediction of DT and MC using the ANFIS-based subtractive clustering algorithm were 0.986 and 0.999, respectively, which showed a high correlation between predicted and experimental values. Sensitivity analysis results showed that IR intensity and treatment time were the most sensitive factors for prediction of DT and MC of coated apricot slices, respectively. Both GA-ANN and ANFIS models' predictions agreed well with testing data sets, and they could be useful for understanding and controlling the factors affecting on drying kinetics of apricot slices in an IR dryer.
Ultrasound (sonication) treatment can be used directly for dehydration or pre-treatment before the osmotic dehydration (OD) procedure of fruit or vegetable particles. The combination of this technique with the OD technique can further improve the dehydration process efficiencies by increasing the mass transfer rates and enhancing final product quality. In this study, apple slices were osmotically dehydrated in different hypertonic sucrose solutions and assisted with or without ultrasound. Sucrose concentrations (in three levels of 30, 40, and 50° Brix), sonication power (in three levels of 0, 75, and 150 W), and treatment time (in six time intervals: 10, 20, 30, 40, 50, and 60 min) were the factors investigated concerning weight reduction, soluble solids gain, water loss and rehydration. Also, mass transfer kinetics were modelled according to Page, Newton, Midilli, Logarithmic, Verma, and Two terms equations. Increased sucrose solution concentration resulted in higher weight reduction, soluble solids gain and water loss. Also, increased sonication power levels resulted in higher weight reduction, soluble solids gain and water loss. The average rehydration ratio of apple slices decreased from 237.7 to 177.5%, by increasing osmotic solution concentration from 30 to 50%. The Page equation showed the best fitting for water loss data. The effective moisture diffusivity (Deff) of apple slices during OD calculated using Fick’s second law applied to a slab geometry was found to be in the range of 1.48 × 10–10 and 4.62 × 10–10 m2s−1 for water loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.