Due to their complicated dynamics and underactuated nature, spherical robots require advanced control methods to reveal all their manoeuvrability features. This paper considers the path tracking control problem of a spherical robot equipped with a 2-DOF pendulum. The pendulum has two input torques that allow it to take angles about the robot’s transverse and longitudinal axes. Due to mechanical technicalities, it is assumed that these angles are immeasurable. First, a neural network observer is designed to estimate the pendulum angles. Then a modified sliding mode controller is proposed for the robot’s tracking control in the presence of uncertainties. Next, the Lyapunov theorem is utilized to analyse the overall stability of the proposed scheme, including the convergence of the observer estimation and the trajectory tracking errors. Finally, simulation results are provided to indicate the effectiveness of the proposed method in comparison with the other available control approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.