Purpose
COVID-19 has infected millions of people worldwide. One of the most important hurdles in controlling the spread of this disease is the inefficiency and lack of medical tests. Computed tomography (CT) scans are promising in providing accurate and fast detection of COVID-19. However, determining COVID-19 requires highly trained radiologists and suffers from inter-observer variability. To remedy these limitations, this paper introduces an automatic methodology based on an ensemble of deep transfer learning for the detection of COVID-19.
Methods
A total of 15 pre-trained convolutional neural networks (CNNs) architectures: EfficientNets(B0-B5), NasNetLarge, NasNetMobile, InceptionV3, ResNet-50, SeResnet 50, Xception, DenseNet121, ResNext50 and Inception_resnet_v2 are used and then fine-tuned on the target task. After that, we built an ensemble method based on majority voting of the best combination of deep transfer learning outputs to further improve the recognition performance. We have used a publicly available dataset of CT scans, which consists of 349 CT scans labeled as being positive for COVID-19 and 397 negative COVID-19 CT scans that are normal or contain other types of lung diseases.
Results
The experimental results indicate that the majority voting of 5 deep transfer learning architecture with EfficientNetB0, EfficientNetB3, EfficientNetB5, Inception_resnet_v2, and Xception has the higher results than the individual transfer learning structure and among the other models based on precision (0.857), recall (0.854) and accuracy (0.85) metrics in diagnosing COVID-19 from CT scans.
Conclusion
Our study based on an ensemble deep transfer learning system with different pre-trained CNNs architectures can work well on a publicly available dataset of CT images for the diagnosis of COVID-19 based on CT scans.
Mitral valve (MV) diseases constitute one of the etiologies of cardiovascular mortality and morbidity. MV pathologies need evaluating and classifying via echocardiographic videos. Transformers have significantly advanced video analytics. MV motion is divided by Carpentier functional classification into four types: normal, increased, restricted, and restricted only during systole. This paper introduces CarpNet, a deep transformer network that incorporates video transformers capable of direct MV pathology Carpentier's classification from the parasternal long‐axis (PLA) echocardiographic videos. The network, instead of processing frames independently, analyzes stacks of temporally consecutive frames using multi‐head attention modules to incorporate MV temporal dynamics into the learned model. To that end, different convolutional neural networks (CNNs) are evaluated as the backbone, and the best model is selected using the information of the PLA view. The use of information obtained by our proposed deep transformer network from consecutive echocardiographic frames yielded better results concerning the Carpentier functional classification than information obtained by CNN‐based (single‐frame) models. Using the Inception_Resnet_V2 architecture as the backbone, CarpNet achieved 71% accuracy in the test dataset. Deep learning and transformers in echocardiographic videos can render quick, precise, and stable evaluations of various MV pathologies.
Introduction: Quantification of lung involvement in COVID-19 using chest Computed tomography (CT) scan can help physicians to evaluate the progression of the disease or treatment response. This paper presents an automatic deep transfer learning ensemble based on pre-trained convolutional neural networks (CNNs) to determine the severity of COVID -19 as normal, mild, moderate, and severe based on the images of the lungs CT.
Material and methods: In this study, two different deep transfer learning strategies were used. In the first procedure, features were extracted from fifteen pre-trained CNNs architectures and then fed into a support vector machine (SVM) classifier. In the second procedure, the pre-trained CNNs were fine-tuned using the chest CT images, and then features were extracted for the purpose of classification by the softmax layer. Finally, an ensemble method was developed based on majority voting of the deep learning outputs to increase the performance of the recognition on each of the two strategies. A dataset of CT scans was collected and then labeled as normal (314), mild (262), moderate (72), and severe (35) for COVID-19 by the consensus of two highly qualified radiologists.
Results: The ensemble of five deep transfer learning outputs named EfficientNetB3, EfficientNetB4, InceptionV3, NasNetMobile, and ResNext50 in the second strategy has better results than the first strategy and also the individual deep transfer learning models in diagnosing the severity of COVID-19 with 85% accuracy.
Conclusions: Our proposed study is well suited for quantifying lung involvement of COVID-19 and can help physicians to monitor the progression of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.