Today’s autonomous vehicles operate in an increasingly general set of circumstances. In particular, unmanned ground vehicles (UGV’s) must be able to travel on whatever terrain the mission offers, including sand, mud, or even snow. These terrains can affect the performance and controllability of the vehicle. Like a human driver who feels his vehicle’s response to the terrain and takes appropriate steps to compensate, a UGV that can autonomously perceive its terrain can also make necessary changes to its control strategy. This article focuses on the development and application of a terrain detection algorithm based on terrain induced vehicle vibration. The dominant vibration frequencies are extracted and used by a probabilistic neural network to identify the terrain. Experimental results based on iRobot’s ATRV Jr (Fig. 1) demonstrate that the algorithm is able to identify with high accuracy multi-differentiated terrains broadly classified as sand, grass, asphalt, and gravel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.