Purpose We characterized the presence of hemangiogenesis (HA) and lymphangiogenesis (LA) in human corneal specimens exhibiting 13 underlying pathologies. Methods Human corneal specimens were obtained from consenting subjects (n = 2 or n = 3 for each pathology; total sample size, n = 35). The pathological specimens were stained with hematoxylin and eosin (H&E) to determine the presence or absence of corneal neovascularization (NV) and superficial or deep stromal distribution of NV. Immunohistochemical staining was then performed to differentiate HA (positive for CD31) from LA (positive for lymphatic vessel endothelial hyaluronan receptor-1 [LYVE-1]). Results The double-negative (CD31−/LYVE-1−) immunostaining, indicating the absence of NV, was exhibited by 21 specimens (60%). CD31+/LYVE-1−, indicating the presence of HA and absence of LA, was exhibited by 12 specimens (34%). The double-positive (CD31+/LYVE-1+) phenotype, indicating both HA and LA, was exhibited by 2 specimens (6%). Notably, the CD31−/LYVE-1+ phenotype, indicating the presence of LA and absence of HA, was not detected among the specimens. Deep stromal NV was exhibited in a 4:3 ratio to superficial stromal NV. The double-negative immunostaining was more prevalent in noninflammatory pathologies, particularly in comparison with combined neovascular phenotypes (ie, CD31+ or LYVE-1+). Among the neovascular phenotypes, HA was 7 times more common than LA. Specimens exhibiting LA presented only with the double-positive phenotype. Conclusions HA is the predominant component of NV in corneal pathologies. LA accompanies HA; however, isolated LA (from lymphatics in the conjunctiva) does not occur in these corneal pathologies. Our results suggest the potential therapeutic utility of targeting antineovascular therapies specifically for corneal HA and/or LA pathology.
The cornea is physiologically avascular. Following a corneal injury, wound healing often proceeds without neovascularization (NV); however, corneal NV may be induced during wound healing in certain inflammatory, infectious, degenerative, and traumatic states. Such states disrupt the physiologic balance between pro-angiogenic and anti-angiogenic mediators, favoring angiogenesis. Contributors to such states are matrix metalloproteinases (MMPs), which are key factors in both extracellular matrix remodeling and angiogenesis. Similarly, vascular endothelial growth factor A (VEGF-A) and basic fibroblast growth factor (bFGF) exert pro-angiogenic effects. Here, we elaborate on the facilitative role of MMPs—specifically Membrane Type 1 MMP (MT1-MMP, MMP14)—in corneal NV. Additionally, we provide new insight into the signaling relating to MT1-MMP, Ras, and ERK in the bFGF-induced VEGF-A expression pathways within the corneal fibroblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.