Dynamic or temporal networks enable representation of time-varying edges between nodes. Conventional adjacency-based data structures used for storing networks such as adjacency lists were designed without incorporating time and can thus quickly retrieve all edges between two sets of nodes (a node-based slice) but cannot quickly retrieve all edges that occur within a given time interval (a time-based slice). We propose a hybrid data structure for storing temporal networks that stores edges in both an adjacency dictionary, enabling rapid node-based slices, and an interval tree, enabling rapid time-based slices. Our hybrid structure also enables compound slices, where one needs to slice both over nodes and time, either by slicing first over nodes or slicing first over time. We further propose an approach for predictive compound slicing, which attempts to predict whether a node-based or time-based compound slice is more efficient. We evaluate our hybrid data structure on many real temporal network data sets and find that they achieve much faster slice times than existing data structures with only a modest increase in creation time and memory usage.
Understanding mechanisms driving link formation in dynamic social networks is a long-standing problem that has implications to understanding social structure as well as link prediction and recommendation. Social networks exhibit a high degree of transitivity, which explains the successes of common neighbor-based methods for link prediction. In this paper, we examine mechanisms behind link formation from the perspective of an ego node. We introduce the notion of personalized degree for each neighbor node of the ego, which is the number of other neighbors a particular neighbor is connected to. From empirical analyses on four on-line social network datasets, we find that neighbors with higher personalized degree are more likely to lead to new link formations when they serve as common neighbors with other nodes, both in undirected and directed settings. This is complementary to the finding of Adamic and Adar [1] that neighbor nodes with higher (global) degree are less likely to lead to new link formations. Furthermore, on directed networks, we find that personalized out-degree has a stronger effect on link formation than personalized in-degree, whereas global in-degree has a stronger effect than global out-degree. We validate our empirical findings through several link recommendation experiments and observe that incorporating both personalized and global degree into link recommendation greatly improves accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.