We describe metabolically inert l-glucosamine-based glycosylated antitumor ether lipids (L-GAELs) that retain the cytotoxic effects of the D-GAELs including the ability to kill BT-474 breast cancer stem cells (CSCs). When compared to adriamycin, cisplatin, and the anti-CSC agent salinomycin, L-GAELs display superior activity to kill cancer stem cells (CSCs). Mode of action studies indicate that L-GAELs like the D-GAELs kill cells via an apoptosis-independent mechanism that was not due to membranolytic effects.
The potent antitumor activity of 1-O-hexadecyl-2-O-methyl-3-O-(2'-amino-2'-deoxy-β-D-glucopyranosyl)-sn-glycerol (1) was previously shown to arise through an apoptosis-independent pathway. Here, a systematic structure-activity study in which the effects of the anomeric linkage, the cationic charge and the glycero moiety on the antitumor activity is described. Eight analogues of 1 were synthesized, and their antitumor activity against breast (JIMT1 and BT549), pancreas (MiaPaCa2) and prostate (DU145, PC3) cancer was determined. 1-O-Hexadecyl-2-O-methyl-3-O-(2'-amino-2'-deoxy-α-D-glucopyranosyl)-sn-glycerol (2) consistently displayed the most potent activity against all five cell lines with CC(50) values in the range of 6-10 μM. However, replacement of the O-glycosidic linkage by a thioglycosidic linkage or replacement of the amino group by an azide or guanidino group leads to a threefold or greater decrease in potency. The glycero moiety also contributes to the overall activity of 1 and 2 but its effects are of lesser importance. Investigation into the mode of action of this class of compounds revealed that, in agreement with previous findings, the cytotoxic effects arise through induction of large acid vacuoles.
BackgroundChemotherapy resistance is one of the major factors contributing to mortality from human epithelial ovarian cancer (EOC). Identifying drugs that can effectively kill chemotherapy-resistant EOC cells would be a major advance in reducing mortality. Glycosylated antitumour ether lipids (GAELs) are synthetic glycolipids that are cytotoxic to a wide range of cancer cells. They appear to induce cancer cell death in an apoptosis-independent manner.MethodsHerein, the effectiveness of two GAELs, GLN and MO-101, in killing chemotherapy-sensitive and –resistant EOC cells lines and primary cell samples was tested using monolayer, non-adherent aggregate, and non-adherent spheroid cultures.ResultsOur results show that EOC cells exhibit a differential sensitivity to the GAELs. Strikingly, both GAELs are capable of inducing EOC cell death in chemotherapy-sensitive and –resistant cells grown as monolayer or non-adherent cultures. Mechanistic studies provide evidence that apoptotic-cell death (caspase activation) contributes to, but is not completely responsible for, GAEL-induced cell killing in the A2780-cp EOC cell line, but not primary EOC cell samples.ConclusionsStudies using primary EOC cell samples supports previously published work showing a GAEL-induced caspase-independent mechanism of death. GAELs hold promise for development as novel compounds to combat EOC mortality due to chemotherapy resistance.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-017-0538-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.