Biofilms of Actinobacillus succinogenes have demonstrated exceptional capabilities as biocatalysts for high productivity, titre, and yield production of succinic acid (SA). The paper presents a microscopic analysis of A. succinogenes biofilms developed under varied fermenter conditions. The concentration of excretion metabolites is controlled by operating the fermenter in a continuous mode where the liquid throughput is adjusted. It is clearly illustrated how the accumulation of excreted metabolites (concomitant with the sodium build-up due to base dosing) have a severe effect on the biofilm structure and physiology. Under high accumulation (HA) conditions some cells exhibit severe elongation while maintaining a cross sectional diameter like the rod/cocci shape cells predominantly found in low accumulation (LA) conditions. The elongated cells formed at high accumulation conditions were found to be more viable than the clusters of rod/cocci shaped cells and appear to form connections between the clusters. The global microscopic structure of the HA biofilms also differed significantly from the LA biofilms. Although both exhibited shedding after 4 days of growth, the LA biofilms were more homogenous (less patchy), thicker and with high viability throughout the biofilm depth. Viability of the HA biofilms were threefold lower than the corresponding LA biofilms towards the end of the fermentation. Visual observations were supported by quantitative analysis of multiple biofilm samples and strengthened the main observations. The work presents valuable insights on the effect of metabolite accumulation on biofilm structure and growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.