The addition of anti-tumour agents such as CFZ along with cardioprotectants to currently available vasodilators may be a promising way to improve PAH therapy.
Diabetes constitutes a major health challenge. Since cardiovascular complications are common in diabetic patients this will further increase the overall burden of disease. Furthermore, stress-induced hyperglycemia in non-diabetic patients with acute myocardial infarction is associated with higher in-hospital mortality. Previous studies implicate oxidative stress, excessive flux through the hexosamine biosynthetic pathway (HBP) and a dysfunctional ubiquitin-proteasome system (UPS) as potential mediators of this process. Since oleanolic acid (OA; a clove extract) possesses antioxidant properties, we hypothesized that it attenuates acute and chronic hyperglycemia-mediated pathophysiologic molecular events (oxidative stress, apoptosis, HBP, UPS) and thereby improves contractile function in response to ischemia-reperfusion. We employed several experimental systems: 1) H9c2 cardiac myoblasts were exposed to 33 mM glucose for 48 hr vs. controls (5 mM glucose); and subsequently treated with two OA doses (20 and 50 µM) for 6 and 24 hr, respectively; 2) Isolated rat hearts were perfused ex vivo with Krebs-Henseleit buffer containing 33 mM glucose vs. controls (11 mM glucose) for 60 min, followed by 20 min global ischemia and 60 min reperfusion ± OA treatment; 3) In vivo coronary ligations were performed on streptozotocin treated rats ± OA administration during reperfusion; and 4) Effects of long-term OA treatment (2 weeks) on heart function was assessed in streptozotocin-treated rats. Our data demonstrate that OA treatment blunted high glucose-induced oxidative stress and apoptosis in heart cells. OA therapy also resulted in cardioprotection, i.e. for ex vivo and in vivo rat hearts exposed to ischemia-reperfusion under hyperglycemic conditions. In parallel, we found decreased oxidative stress, apoptosis, HBP flux and proteasomal activity following ischemia-reperfusion. Long-term OA treatment also improved heart function in streptozotocin-diabetic rats. These findings are promising since it may eventually result in novel therapeutic interventions to treat acute hyperglycemia (in non-diabetic patients) and diabetic patients with associated cardiovascular complications.
Ligand/receptor-stimulation of cells promotes protein carbonylation that is followed by the decarbonylation process, which might involve thiol-dependent reduction (Wong et al., Circ. Res. 102 301-318, 2008). The present study further investigated the properties of this protein decarbonylation mechanism. We found that the thiol-mediated reduction of protein carbonyls is dependent on heat-labile biologic components. Cysteine and glutathione were found to be efficient substrates for decarbonylation. Thiols decreased the protein carbonyl content, as detected by 2,4-dinitrophenylhydrazine, but not the levels of malondialdehyde or 4-hydroxynonenal protein adducts. Mass spectrometry identified proteins that undergo thiol-dependent decarbonylation, which include peroxiredoxins. Peroxiredoxins-2 and -6 were found to be carbonylated and subsequent decarbonylated in response to the ligand/receptor-stimulation of cells. siRNA knockdown of glutaredoxin inhibited the decarbonylation of peroxiredoxin. These results strengthen the concept that thiol-dependent decarbonylation defines the kinetics of protein carbonylation signaling.
These results suggest that RV decompensation is associated with the death of cardiomyocytes, resulting in fibrosis. However, the remaining myocytes are capable of sustaining RV contractility through the mechanism that involves CSQ2.
AimsPulmonary arterial hypertension (PAH) is a lethal disease and improved therapeutic strategies are needed. Increased pulmonary arterial pressure, due to vasoconstriction and vascular remodeling, causes right ventricle (RV) failure and death in patients. The treatment of Sprague-Dawley rats with SU5416 injection and exposure to chronic hypoxia for three weeks followed by maintenance in normoxia promote progressive and severe PAH with pathologic features that resemble human PAH. At 5–17 weeks after the SU5416 injection, PAH is developed with pulmonary vascular remodeling as well as RV hypertrophy and fibrosis. The present study investigated subsequent events that occur in these PAH animals.Methods & resultsAt 35 weeks after the SU5416 injection, rats still maintained high RV pressure, but pulmonary vascular remodeling was significantly reduced. Metabolomics analysis revealed that lungs of normal rats and rats from the 35-week time point had different metabolomics profiles. Despite the maintenance of high RV pressure, fibrosis was resolved at 35-weeks. Masson’s trichrome stain and Western blotting monitoring collagen 1 determined 12% fibrosis in the RV at 17-weeks, and this was decreased to 5% at 35-weeks. The level of myofibroblasts was elevated at 17-weeks and normalized at 35-weeks.ConclusionsThese results suggest that biological systems possess natural ways to resolve pulmonary and RV remodeling. The resolution of RV fibrosis appears to involve the reduction of myofibroblast-dependent collagen synthesis. Understanding these endogenous mechanisms should help improve therapeutic strategies to treat PAH and RV failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.