Cigarette smokers are generally known to gain weight after quitting smoking, and such weight gain is thought to contribute to the worsening of glucose tolerance. While smoking cessation therapy such as nicotine replacement is useful to minimize post-cessation weight gain, substantial gain occurs even during the therapy. The purpose of the present study was to identify factors associated with weight gain during smoking cessation therapy. We evaluated 186 patients(132 males and 54 females)who visited our outpatient clinic for smoking cessation, and successfully achieved smoking abstinence. We performed gender-adjusted regression analysis for the rate of BMI increase from the beginning of cessation to 3 months after initiation. Furthermore, we performed multivariate analysis to investigate factors that determine the BMI increase after smoking cessation. The mean BMI significantly (p<0.0001) increased from 23.5±3.6 kg/m2 at the initial consultation to 23.9±3.8 kg/m2 at 3 months after the start of therapy. There was no significant difference in the extent of BMI increase between nicotine patch and varenicline therapy groups. Factors significantly correlated with the %BMI increase at 3 months after the start of therapy were triglyceride (p = 0.0006, βa = 0.260), high-density lipoprotein cholesterol (p = 0.0386, βa = −0.168), daily cigarette consumption (p = 0.0385, βa = 0.154), and the Fagerström Test for Nicotine Dependence (FTND) score (p = 0.0060, βa = 0.203). Stepwise multivariate analysis demonstrated that triglyceride and the FTND score were the factors determining the post-cessation BMI increase and that the FTND score was the strongest one. The present study demonstrated that smokers with a high FTND score are more likely to gain weight during smoking cessation therapy. Thus, smokers with a high nicotine dependency may require intervention against weight gain in the cessation clinic.
Although cardiovascular risks decrease after quitting smoking, body weight often increases in the early period after smoking cessation. We have previously reported that the serum level of the α1-antitrypsin–low-density lipoprotein complex (AT–LDL)—an oxidatively modified low-density lipoprotein that accelerates atherosclerosis—is high in current smokers, and that the level rapidly decreases after smoking cessation. However, the effects of weight gain after smoking cessation on this cardiovascular marker are unknown. In 183 outpatients (134 males, 49 females) who had successfully quit smoking, serum AT–LDL levels were measured using an enzyme-linked immunosorbent assay. For all persons who had successfully quit smoking, body mass index (BMI) significantly increased 12 weeks after the first examination (p < 0.01). Among patients with a BMI increase smaller than the median, a significant decrease (p < 0.01) in serum AT–LDL values was found, but no significant changes in serum AT–LDL values were found in patients with a BMI increase greater than the median. The findings suggest that the decrease in serum AT–LDL levels after quitting smoking is influenced by weight gain after smoking cessation.
The novel coronavirus disease 2019 (COVID-19) has already evolved into a rapidly expanding pandemic. Risk factors for COVID-19, such as cardiovascular disease, chronic obstructive pulmonary disease and diabetes, are all strongly associated with smoking habits. The effects of cigarette smoking on the transmission of the virus and worsening of COVID-19 have been less addressed. Emerging data indicate that smoking history is the major determinant of worsening COVID-19 outcomes. Smoking cessation recovers airway ciliary clearance and immune function. Thus, smoking cessation awareness is strongly encouraged as a public health measure to limit the global impact of COVID-19.
The natural compound, curcumin (CUR), possesses several pharmacological properties, including p300-specific histone acetyltransferase (HAT) inhibitory activity. In our previous study, we demonstrated that CUR could prevent the development of cardiac hypertrophy by inhibiting p300-HAT activity. Other major curcuminoids isolated from Curcuma longa including demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) are structural analogs of CUR. In present study, we first confirmed the effect of these three curcuminoid analogs on p300-HAT activity and cardiomyocyte hypertrophy. Our results showed that DMC and BDMC inhibited p300-HAT activity and cardiomyocyte hypertrophy to almost the same extent as CUR. As the three compounds have structural differences in methoxy groups at the 3-position of their phenol rings, our results suggest that these methoxy groups are not involved in the inhibitory effects on p300-HAT activity and cardiac hypertrophy. These findings provide useful insights into the structure-activity relationship and biological activity of curcuminoids for p300-HAT activity and cardiomyocyte hypertrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.