The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature and differential diagnosis for classifying microscopic lesions observed in the male reproductive system of laboratory rats and mice, with color microphotographs illustrating examples of some lesions. The standardized nomenclature presented in this document is also available for society members electronically on the Internet (http://goreni.org). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous and aging lesions as well as lesions induced by exposure to test materials. A widely accepted and utilized international harmonization of nomenclature for lesions of the male reproductive system in laboratory animals will decrease confusion among regulatory and scientific research organizations in different countries and provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists.
Adenocarcinoma associated with lung cancer is regarded to have biological characteristics that distinguish it from squamous cell carcinoma. Node invasion may be associated with bFGF. bFGF and VEGF augment each other and are associated with leading to poor prognosis. The results of this study suggests that effective therapy to block angiogenesis may need to address at least both of these factors in cases of NSCLC.
Mouse monoclonal antibodies against CD3 on human T lymphocytes have been used for therapy in organ-transplant patients as a potent immunosuppressive agent or for treatment of cancer as a potent T cell activating agent. However, an inherent problem in their in vivo application is the human anti-mouse antibody response. In this study, we cloned and sequenced the variable region genes of the heavy and light chains (VH and V kappa) of a mouse anti-human CD3 monoclonal antibody (OKT3) using the reverse transcription-polymerase chain reaction method. Then, we constructed a mouse/human chimeric antibody, designated as Ch OKT3, by fusing the OKT3 VH and V kappa genes to the human heavy and light chain constant region genes (C gamma 1 and C kappa) derived from a human plasma cell leukemia line (ARH77), respectively. The chimeric gene constructs were sequentially co-transfected into mouse non-Ig-producing hybridoma cells (Sp2/0) by electroporation. The Ch OKT3 antibody thus prepared bound to human peripheral blood mononuclear cells and competitively inhibited the binding of the parental MAb OKT3 to the blood mononuclear cells, indicating that this chimeric antibody seems to be suitable for in vivo therapeutic approaches.
Parietal pleural plaques and visceral pleural fibrosis are well-recognized stigmata of occupational asbestos exposure. However, their pathogenesis is poorly understood. Conceivably, phagocytosis of asbestos fibers by pleural mesothelial cells may stimulate the recruitment of fibroblasts to sites of asbestos-induced pleural injury. To test this hypothesis, rat parietal pleural mesothelial cells were cultured for 6 to 96 h with or without crocidolite or chrysotile asbestos fibers (concentration range, 2 to 100 micrograms/cm2). Asbestos fibers were actively phagocytosed by pleural mesothelial cells and were incorporated within phagosomes. Conditioned medium was assayed for chemotactic activity toward RL-87 rat lung fibroblasts and for fibronectin immunoreactivity. The effects of asbestos were compared with those of alpha-cristobalite (which is strongly fibrogenic), alpha-quartz (a less fibrogenic particulate), and carbonyl iron (a nonfibrogenic agent). Both types of asbestos stimulated the secretion of fibroblast chemoattractant activity by pleural mesothelial cells in a time-dependent manner. This effect peaked at 96 h in cultures containing 4 micrograms/cm2 of asbestos (P < 0.001). alpha-Cristobalite also enhanced the secretion of the mesothelial cell-derived chemoattractant, an effect that was maximal at a concentration of 20 micrograms/cm2 (P < 0.001). Furthermore, crocidolite, chrysotile, and alpha-cristobalite stimulated pleural mesothelial cell fibronectin synthesis. In contrast, alpha-quartz and carbonyl iron particles had no noticeable effect on either immunoreactive fibronectin secretion or chemoattractant release by pleural mesothelial cells. The ability of asbestos fibers and alpha-cristobalite particles to stimulate the secretion of the fibroblast chemoattractant, fibronectin, by pleural mesothelial cells may have relevance to the induction of pleural injury by fibrogenic particulates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.