To investigate the mechanism that controls circadian rhythms in the mammalian retina, we examined the mRNA expression rhythms of serotonin N-acetyltransferase (NAT), the mammalian clock gene rPer2 and a clock-controlled gene Dbp in the retina of rats with lesions of the suprachiasmatic nucleus (SCN), the master clock in mammals. Northern blot analyses showed that retinal NAT mRNA still exhibited the circadian expression in the SCN-lesioned rats, whereas the lesion abolished the rhythms of rPer2 and Dbp mRNAs. These findings suggest that the mammalian retina has two circadian oscillatory mechanisms: one can generate rhythmicity independent of the SCN and the other requires the SCN to maintain circadian oscillation.
These results suggest that additional US and thorough examinations are necessary if a lesion cannot be confirmed as a simple renal cyst on initial US. Furthermore, to improve the skill levels of healthcare professionals who perform and interpret US, a feedback system should be established where data related to complete medical screenings are available to the personnel involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.