Several studies have implicated Wnt signalling in primary axis formation during vertebrate embryogenesis, yet no Wnt protein has been shown to be essential for this process. In the mouse, primitive streak formation is the first overt morphological sign of the anterior-posterior axis. Here we show that Wnt3 is expressed before gastrulation in the proximal epiblast of the egg cylinder, then is restricted to the posterior proximal epiblast and its associated visceral endoderm and subsequently to the primitive streak and mesoderm. Wnt3-/- mice develop a normal egg cylinder but do not form a primitive streak, mesoderm or node. The epiblast continues to proliferate in an undifferentiated state that lacks anterior-posterior neural patterning, but anterior visceral endoderm markers are expressed and correctly positioned. Our results suggest that regional patterning of the visceral endoderm is independent of primitive streak formation, but the subsequent establishment of anterior-posterior neural pattern in the ectoderm is dependent on derivatives of the primitive streak. These studies provide genetic proof for the requirement of Wnt3 in primary axis formation in the mouse.
Histone acetyltransferases regulate transcription, but little is known about the role of these enzymes in developmental processes. Gcn5 (encoded by Gcn5l2) and Pcaf, mouse histone acetyltransferases, share similar sequences and enzymatic activities. Both interact with p300 and CBP (encoded by Ep300 and Crebbp, respectively), two other histone acetyltransferases that integrate multiple signalling pathways. Pcaf is thought to participate in many of the cellular processes regulated by p300/CBP (refs 2-8), but the functions of Gcn5 are unknown in mammalian cells. Here we show that the gene Pcaf is dispensable in mice. In contrast, Gcn5l2-null embryos die during embryogenesis. These embryos develop normally to 7.5 days post coitum (d.p.c.), but their growth is severely retarded by 8.5 d.p.c. and they fail to form dorsal mesoderm lineages, including chordamesoderm and paraxial mesoderm. Differentiation of extra-embryonic and cardiac mesoderm seems to be unaffected. Loss of the dorsal mesoderm lineages is due to a high incidence of apoptosis in the Gcn5l2 mutants that begins before the onset of morphological abnormality. Embryos null for both Gcn5l2 and Pcaf show even more severe defects, indicating that these histone acetyltransferases have overlapping functions during embryogenesis. Our studies are the first to demonstrate that specific acetyltransferases are required for cell survival and mesoderm formation during mammalian development.
The emergence of Middle East respiratory syndrome-coronavirus (MERS-CoV) in the Middle East since 2012 has caused more than 900 human infections with ϳ40% mortality to date. Animal models are needed for studying pathogenesis and for development of preventive and therapeutic agents against MERS-CoV infection. Nonhuman primates (rhesus macaques and marmosets) are expensive models of limited availability. Although a mouse lung infection model has been described using adenovirus vectors expressing human CD26/dipeptidyl peptidase 4 (DPP4), it is believed that a transgenic mouse model is needed for MERSCoV research. We have developed this transgenic mouse model as indicated in this study. We show that transgenic mice globally expressing hCD26/DPP4 were fully permissive to MERS-CoV infection, resulting in relentless weight loss and death within days postinfection. High infectious virus titers were recovered primarily from the lungs and brains of mice at 2 and 4 days postinfection, respectively, whereas viral RNAs were also detected in the heart, spleen, and intestine, indicating a disseminating viral infection. Infected Tg ؉ mice developed a progressive pneumonia, characterized by extensive inflammatory infiltration. In contrast, an inconsistent mild perivascular cuffing was the only pathological change associated with the infected brains. Moreover, infected Tg ؉ mice were able to activate genes encoding for many antiviral and inflammatory mediators within the lungs and brains, coinciding with the high levels of viral replication. This new and unique transgenic mouse model will be useful for furthering knowledge of MERS pathogenesis and for the development of vaccine and treatments against MERS-CoV infection. IMPORTANCESmall and economical animal models are required for the controlled and extensive studies needed for elucidating pathogenesis and development of vaccines and antivirals against MERS. Mice are the most desirable small-animal species for this purpose because of availability and the existence of a thorough knowledge base, particularly of genetics and immunology. The standard small animals, mice, hamsters, and ferrets, all lack the functional MERS-CoV receptor and are not susceptible to infection. So, initial studies were done with nonhuman primates, expensive models of limited availability. A mouse lung infection model was described where a mouse adenovirus was used to transfect lung cells for receptor expression. Nevertheless, all generally agree that a transgenic mouse model expressing the DPP4 receptor is needed for MERS-CoV research. We have developed this transgenic mouse model as indicated in this study. This new and unique transgenic mouse model will be useful for furthering MERS research.
Zika virus (ZIKV) infection of pregnant patients could cause a wide range of congenital abnormalities (including microcephaly) now collectively known as congenital ZIKV syndrome1. A vaccine to prevent or significantly attenuate viremia in pregnant women and travelers to epidemic/endemic regions is needed to avert congenital ZIKV syndrome, and could also be useful to suppress epidemic transmission. Here we report a live-attenuated vaccine candidate that contains a 10-nucleotide deletion in the 3’ untranslated region of ZIKV genome (10-del ZIKV). The 10-del ZIKV is highly attenuated, immunogenic, and protective in the A129 mouse model. Critically, a single dose of 10-del ZIKV induced sterilizing immunity with a high level of neutralizing antibodies and completely prevented viremia after challenge. The immunized mice also developed a robust T cell response. Intracranial inoculation of one-day-old CD1 mice with 1×104 IFU of 10-del ZIKV caused no detectable disease, whereas infections with 10 IFU of wild-type ZIKV were lethal. Mechanistically, the 10-del ZIKV attenuated its virulence through decreased viral RNA synthesis and increased sensitivity to type-I interferon inhibition. The attenuated 10-del ZIKV was incompetent in infecting mosquitoes after oral feeding of spiked blood meals, representing an additional safety feature for use in non-endemic regions. Collectively, the safety and efficacy results warrant further development of this promising live-attenuated ZIKV vaccine candidate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.