Aneuploidy in fetal chromosomes is one of the causes of pregnancy loss and of congenital birth defects. It is known that the frequency of oocyte aneuploidy increases with the human maternal age. Recent data have highlighted the contribution of cohesin complexes in the correct segregation of meiotic chromosomes. In mammalian oocytes, cohesion is established during the fetal stages and meiosis-specific cohesin subunits are not replenished after birth, raising the possibility that the long meiotic arrest of oocytes facilitates a deterioration of cohesion that leads to age-related increases in aneuploidy. We here examined the cohesin levels in dictyate oocytes from different age groups of humans and mice by immunofluorescence analyses of ovarian sections. The meiosis-specific cohesin subunits, REC8 and SMC1B, were found to be decreased in women aged 40 and over compared with those aged around 20 years (P<0.01). Age-related decreases in meiotic cohesins were also evident in mice. Interestingly, SMC1A, the mitotic counterpart of SMC1B, was substantially detectable in human oocytes, but little expressed in mice. Further, the amount of mitotic cohesins of mice slightly increased with age. These results suggest that, mitotic and meiotic cohesins may operate in a coordinated way to maintain cohesions over a sustained period in humans and that age-related decreases in meiotic cohesin subunits impair sister chromatid cohesion leading to increased segregation errors.
Meiotic pachytene checkpoints monitor the failure of homologous recombination and synapsis to ensure faithful chromosome segregation during gamete formation. To date, the molecular basis of the mammalian pachytene checkpoints has remained largely unknown. We here report that mouse HORMAD1 is required for a meiotic prophase checkpoint that eliminates asynaptic oocytes. Hormad1-deficient mice are infertile and show an extensive failure of homologous pairing and synapsis, consistent with the evolutionarily conserved function of meiotic HORMA domain proteins. Unexpectedly, Hormad1-deficient ovaries contain a normal number of oocytes despite asynapsis and consequently produce aneuploid oocytes, indicating a checkpoint failure. By the analysis of Hormad1 ⁄ Spo11 double mutants, the Hormad1 deficiency was found to abrogate the massive oocyte loss in the Spo11-deficient ovary. The Hormad1 deficiency also causes the eventual loss of pseudo sex body in the Spo11-deficient ovary and testis. These results suggest the involvement of HORMAD1 in the repressive chromatin domain formation that is proposed to be important in the meiotic prophase checkpoints. We also show the extensive phosphorylation of HORMAD1 in the Spo11-deficient testis and ovary, suggesting an involvement of novel DNA damage-independent phosphorylation signaling in the surveillance mechanism. Our present results provide clues to HORMAD1-dependent checkpoint in response to asynapsis in mammalian meiosis.
Aneuploidy, a chromosomal numerical abnormality in the conceptus or fetus, occurs in at least 5% of all pregnancies and is the leading cause of early pregnancy loss in humans. Accumulating evidence now suggests that the correct segregation of chromosomes is affected by events occurring in prophase during meiosis I. These events include homologous chromosome pairing, sister-chromatid cohesion, and meiotic recombination. In our current study, we show that mutations in SYCP3, a gene encoding an essential component of the synaptonemal complex that is central to the interaction of homologous chromosomes, are associated with recurrent pregnancy loss. Two out of 26 women with recurrent pregnancy loss of unknown cause were found to carry independent heterozygous nucleotide alterations in this gene, neither of which was present among a group of 150 fertile women. Analysis of transcripts from minigenes harboring each of these two mutations revealed that both affected normal splicing, possibly resulting in the production of C-terminally mutated proteins. The mutant proteins were found to interact with their wild-type counterpart in vitro and inhibit the normal fiber formation of the SYCP3 protein when coexpressed in a heterologous system. These data suggest that these mutations are likely to generate an aberrant synaptonemal complex in a dominant-negative manner and contribute to abnormal chromosomal behavior that might lead to recurrent miscarriage. Combined with the fact that similar mutations have been previously identified in two males with azoospermia, our current data suggest that sexual dimorphism in response to meiotic disruption occurs even in humans.
Meiotic chromosome segregation requires homologous pairing, synapsis and crossover recombination during meiotic prophase. The checkpoint kinase ATR has been proposed to be involved in the quality surveillance of these processes, although the underlying mechanisms remain largely unknown. In our present study, we generated mice lacking HORMAD2, a protein that localizes to unsynapsed meiotic chromosomes. We show that this Hormad2 deficiency hampers the proper recruitment of ATR activity to unsynapsed chromosomes. Male Hormad2-deficient mice are infertile due to spermatocyte loss as a result of characteristic impairment of sex body formation; an ATR-and cH2AX-enriched repressive chromatin domain is formed, but is partially dissociated from the elongated sex chromosome axes. In contrast to males, Hormad2-deficient females are fertile. However, our analysis of Hormad2/ Spo11 double-mutant females shows that the oocyte number is negatively correlated with the frequency of pseudo-sex body formation in a Hormad2 gene dosage-dependent manner. This result suggests that the elimination of Spo11-deficient asynaptic oocytes is associated with the HORMAD2-dependent pseudo-sex body formation that is likely initiated by local concentration of ATR activity in the absence of double-strand breaks. Our results thus show a HORMAD2-dependent quality control mechanism that recognizes unsynapsis and recruits ATR activity during mammalian meiosis.
Detection of endocrine disrupting chemicals, in particular, environmental estrogens with living organisms, has many advantages if compared to chemical analysis. The screening of novel pollutants with meaningful endpoints, the integration of uptake, bioconcentration, and excretion as well as the evaluation of endocrine disrupting effects with respect to toxicity require in vivo biotests for estrogen-like substances (ELSs). Critical disadvantages of whole organism biotests are their low sensitivity and the need for laborious and time-consuming work. To overcome these problems, we have developed a transgenic medaka strain harboring the green fluorescence protein (GFP) gene driven by choriogenin H gene regulatory elements. Choriogenin H is an egg envelope protein induced by estrogens in the liver. With yolk sac larvae of this strain, GFP induction in liver was observed 24 h after onset of aqueous exposure to 0.63 nM 17beta-estradiol (E2), 0.34 nM ethynylestradiol, or 14.8 nM estrone. Furthermore, concentrated sewage treatment effluent induced GFP expression. Comparison of E2 equivalents estimated by GFP-induction in transgenic medaka, a YES assay, and GC/MS showed detection limits in the same order of magnitude. These results indicated that the sensitivity of the transgenic medaka strain was sufficient for application as an alternative model in monitoring environmental water samples for ELSs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.