There is increasing evidence that hippocampal learning correlates strongly with neurogenesis in the adult brain. Increases in neurogenesis after brain injury also correlate with improved outcomes. With aging the capacity to generate new neurons decreases dramatically, both under normal conditions and after injury. How this decrease occurs is not fully understood, but we hypothesized that transforming growth factor (TGF)-beta1, a cell cycle regulator that rapidly increases after injury and with age, might play a role. We found that chronic overproduction of TGF-beta1 from astrocytes almost completely blocked the generation of new neurons in aged transgenic mice. Even young adult TGF-beta1 mice had 60% fewer immature, doublecortin-positive, hippocampal neurons than wild-type littermate controls. Bromodeoxyuridine labeling of dividing cells in 2-month-old TGF-beta1 mice confirmed this decrease in neuro-genesis and revealed a similar decrease in astrogenesis. Treatment of early neural progenitor cells with TGF-beta1 inhibited their proliferation. This strongly suggests that TGF-beta1 directly affects these cells before their differentiation into neurons and astrocytes. Together, these data show that TGF-beta1 is a potent inhibitor of hippocampal neural progenitor cell proliferation in adult mice and suggest that it plays a key role in limiting injury and age-related neurogenesis.
Since its introduction in the early 1990s, layer-by-layer (LbL) self-assembly of films has been widely used in the fields of nanoelectronics, optics, sensors, surface coatings, and controlled drug delivery. The growth of this industry is propelled by the ease of film manufacture, low cost, mild assembly conditions, precise control of coating thickness, and versatility of coating materials. Despite the wealth of research on LbL for biomolecule delivery, clinical translation has been limited and slow. This review provides an overview of methods and mechanisms of loading biomolecules within LbL films and achieving controlled release. In particular, this review highlights recent advances in the development of LbL coatings for the delivery of different types of biomolecules including proteins, polypeptides, DNA, particles and viruses. To address the need for co-delivery of multiple types of biomolecules at different timing, we also review recent advances in incorporating compartmentalization into LbL assembly. Existing obstacles to clinical translation of LbL technologies and enabling technologies for future directions are also discussed.
There are two forms of naturally occurring vitamin K, phylloquinone and the menaquinones. Phylloquinone (vitamin K 1 ) is a major type (>90%) of dietary vitamin K, but its concentrations in animal tissues are remarkably low compared with those of the menaquinones, especially menaquinone-4 (vitamin K 2 ), the major form (>90%) of vitamin K in tissues. Despite this great difference, the origin of tissue menaquinone-4 has yet to be exclusively defined. It is postulated that phylloquinone is converted into menaquinone-4 and accumulates in extrahepatic tissues. To clarify this, phylloquinone with a deuterium-labeled 2-methyl-1,4-naphthoquinone ring was given orally to mice, and cerebra were collected for D NMR and liquid chromatography-tandem mass spectrometry analyses. We identified the labeled menaquinone-4 that was converted from the given phylloquinone, and this conversion occurred following an oral or enteral administration, but not parenteral or intracerebroventricular administration. By the oral route, the phylloquinone with the deuterium-labeled side chain in addition to the labeled 2-methyl-1,4-naphthoquinone was clearly converted into a labeled menaquinone-4 with a non-deuterium-labeled side chain, implying that phylloquinone was converted into menaquinone-4 via integral side-chain removal. The conversion also occurred in cerebral slice cultures and primary cultures. Deuterium-labeled menadione was consistently converted into the labeled menaquinone-4 with all of the administration routes and the culture conditions tested. Our results suggest that cerebral menaquinone-4 originates from phylloquinone intake and that there are two routes of accumulation, one is the release of menadione from phylloquinone in the intestine followed by the prenylation of menadione into menaquinone-4 in tissues, and another is cleavage and prenylation within the cerebrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.