BackgroundEndothelial dysfunction is an independent predictor for cardiovascular events in patients with type 2 diabetes (T2DM). Glucagon like peptide‐1 (GLP‐1) reportedly exerts vasodilatory actions, and inhibitors of dipeptidyl peptidase‐4 (DPP‐4), an enzyme‐degrading GLP‐1, are widely used to treat T2DM. We therefore hypothesized that DPP‐4 inhibitors (DPP‐4Is) improve endothelial function in T2DM patients and performed 2 prospective, randomized crossover trials to compare the DPP‐4I sitagliptin and an α‐glucosidase inhibitor, voglibose (in study 1) and the DPP‐4Is sitagliptin and alogliptin (in study 2).Methods and ResultsIn study 1, 24 men with T2DM (46±5 years) were randomized to sitagliptin or voglibose for 6 weeks without washout periods. Surprisingly, sitagliptin significantly reduced flow‐mediated vasodilatation (FMD; −51% compared with baseline, P<0.05) of the brachial artery despite improved diabetic status. In contrast, voglibose did not affect FMD. To confirm this result and determine whether it is a class effect, we conducted another trial (study 2) to compare sitagliptin and alogliptin in 42 T2DM patients (66±8 years) for 6 weeks with 4‐week washout periods. Both DPP‐4Is improved glycemic control but significantly attenuated FMD (7.2/4.3%, P<0.001, before/after sitagliptin; 7.0/4.8%, P<0.001, before/after alogliptin, respectively). Interestingly, FMD reduction was less evident in subjects who were on statins or whose LDL cholesterol levels were reduced by them, but this was not correlated with parameters including DPP‐4 activity and GLP‐1 levels or diabetic parameters.ConclusionsOur 2 independent trials demonstrated that DPP‐4 inhibition attenuated endothelial function as evaluated by FMD in T2DM patients. This unexpected unfavorable effect may be a class effect of DPP‐4Is.Clinical Trial RegistrationURL: http://center.umin.ac.jp, Unique Identifiers: UMIN000005682 (sitagliptin versus voglibose) and UMIN000005681 (sitagliptin versus alogliptin).
These results show that latent cardiac and vasomotor sympathetic dysfunction but not parasympathetic dysfunction is already present in early stage de novo PD, even without orthostatic hypotension.
Summary ATP-binding cassette transporters (ABC) A1 and G1 are key molecules in cholesterol efflux from macrophages, which is an initial step of reverse cholesterol transport (RCT), a major anti-atherogenic property of high-density lipoprotein (HDL). Astaxanthin is one of the naturally occurring carotenoids responsible for the pink-red pigmentation in a variety of living organisms. Although astaxanthin is known to be a strong antioxidant, it remains unclear through what mechanism of action it affects cholesterol homeostasis in macrophages. We therefore investigated the effects of astaxanthin on cholesterol efflux and ABCA1/G1 expressions in macrophages. Astaxanthin enhanced both apolipoprotein (apo) A-I-and HDL-mediated cholesterol efflux from RAW264.7 cells. In supporting these enhanced cholesterol efflux mechanisms, astaxanthin promoted ABCA1/G1 expression in various macrophages. In contrast, peroxisome proliferator-activated receptor ␥ , liver X receptor (LXR) ␣ and LXR  levels remained unchanged by astaxanthin. An experiment using actinomycin D demonstrated that astaxanthin transcriptionally induced ABCA1/G1 expression, and oxysterol depletion caused by overexpression of cholesterol sulfotransferase further revealed that these inductions in ABCA1/G1 were independent of LXR-mediated pathways. Finally, we performed luciferase assays using human ABCA1/G1 promoterreporter constructs to reveal that astaxanthin activated both promoters irrespective of the presence or absence of LXR-responsive elements, indicating LXR-independence of these activations. In conclusion, astaxanthin increased ABCA1/G1 expression, thereby enhancing apoA-I/HDL-mediated cholesterol efflux from the macrophages in an LXR-independent manner. In addition to the anti-oxidative properties, the potential cardioprotective properties of astaxanthin might therefore be associated with an enhanced anti-atherogenic function of HDL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.