These findings indicate that alpha- and beta-adrenergic pathways differentially regulate myocardial cell apoptosis. The results also suggest that a cAMP- protein kinase A pathway is necessary and sufficient for beta-adrenergic agonist-induced apoptosis and that this apoptotic pathway is not functional in other cell types, for example, PC12 cells.
The accelerated myocardial synthesis of ET-1 contributes directly to LV contractile dysfunction during the transition from LVH to CHF. Unelevated levels of LV ET-1 at the established LVH stage and lack of effects on LV mass by chronic bosentan treatment suggest that myocardial growth is mediated through alternative pathways. These studies indicate that chronic ET antagonism may provide an additional strategy for heart failure therapy in humans.
Basic fibroblast growth factor (bFGF) is an important angiogenic factor produced by hearts subjected to ischemia. However, the direct effects of bFGF on myocardial cells are unknown. Primary cultured cardiac myocytes from neonatal rats were stimulated with lipopolysaccharide (LPS), a potent inducer of inducible nitric oxide synthase (iNOS), in the presence or the absence of bFGF. LPS induced the expression of iNOS in cardiac myocytes, demonstrated at both mRNA and protein levels. We showed that LPS activated the apoptotic pathway, evidenced by TUNEL staining, DNA ladder formation, and morphologic features. LPS-induced apoptosis was blocked by the administration of L-NAME, an inhibitor of NOS. This indicates that LPS induces apoptosis via an iNOS-dependent pathway. Administration of bFGF completely inhibited myocardial cell apoptosis induced by hydrogen peroxide or acidic medium as well as LPS. To determine signaling pathways for this inhibitory effect, we utilized PD098059, an MEK-1-specific inhibitor. PD098059 blocked bFGF-induced activation of ERK (extracellularly responsive kinase)-1/2 and neutralized the apoptotic inhibitory effect of bFGF. These findings demonstrate that LPS induces myocardial cell apoptosis in an iNOS-dependent manner. The results also suggest that bFGF is a protective factor against myocardial cell apoptosis and that this protection requires the MEK-1-ERK pathway.
These findings suggest that ET-1 represents a protective factor against myocardial cell apoptosis in heart failure and that this effect is mediated mainly through endothelin type A receptor-dependent pathways involving multiple downstream signalings in cardiac myocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.