Lysine specific demethylase 1 (LSD1) plays a key role in the regulation of gene expression by removing the methyl groups from methylated Lys4 of histone H3 (H3K4). Here we report the identification of the first small-molecule LSD1-selective inhibitors. These inhibitors show in vivo H3K4-methylating activity and antiproliferative activity and should be useful as lead structures for anticancer drugs and as tools for studying the biological roles of LSD1.
Reduction-oxidation (redox) regulation has been implicated in the activation of the transcription factor NF-B. However, the significance and mechanism of the redox regulation remain elusive, mainly due to the technical limitations caused by rapid proton transfer in redox reactions and by the presence of many redox molecules within cells. Here we establish versatile methods for measuring redox states of proteins and their individual cysteine residues in vitro and in vivo, involving thiolmodifying reagents and LC-MS analysis. Using these methods, we demonstrate that the redox state of NF-B is spatially regulated by its subcellular localization. While the p65 subunit and most cysteine residues of the p50 subunit are reduced similarly in the cytoplasm and in the nucleus, Cys-62 of p50 is highly oxidized in the cytoplasm and strongly reduced in the nucleus. The reduced form of Cys-62 is essential for the DNA binding activity of NF-B. Several lines of evidence suggest that the redox factor Ref-1 is involved in Cys-62 reduction in the nucleus. We propose that the Ref-1-dependent reduction of p50 in the nucleus is a necessary step for NF-B activation. This study also provides the first example of a drug that inhibits the redox reaction between two specific proteins.The redox states of cysteine residues, which can change reversibly within cells, often greatly influence the various properties of proteins, such as protein stability, chaperone activity, enzymatic activity, and protein structure (1-5). It has also been suggested that several transcription factors bind to their cognate sites in a redox-regulated manner. Well characterized cases include the prokaryotic transcription factors SoxR and OxyR, which function as oxidative stress sensors, their DNA binding activated through oxidation of critical cysteine residues (6 -7). In most cases, however, the roles and mechanisms of redox regulation are not fully defined because it is difficult to monitor the alteration of redox states of proteins mainly due to the rapid proton transfer in redox reactions. A few have directly quantified the redox state of cysteine clustered with iron or amounts of oxidized cysteines using physicochemical or biochemical techniques (3, 8 -9), but these methods cannot describe the whole picture of redox states of a protein and are not widely applicable to other proteins. Therefore, most researchers have chosen an indirect way of using cysteine-substitution mutant proteins (3-5, 7).NF-B 1 is a eukaryotic transcription factor that regulates a wide variety of genes involved in immune function and development (10). NF-B is composed of two subunits, p50 and p65, both of which are members of the Rel family of transcription factors. NF-B normally exists in the cytoplasm, forming an inactive ternary complex with the inhibitor protein IB␣. Following the application of appropriate stimuli, NF-B is released from IB␣ and translocates into the nucleus, where it binds DNA and activates transcription of target genes. Mechanisms of NF-B activation have been exten...
Bioflavonoids, extracted from flower petals, were examined for their growth inhibitory effect on cells in culture. They were found to significantly suppress the growth of the cultured cells. Anthocyanins tended to show greater inhibitory effect than other flavonoids. Commercially synthesized or purified aglycones of flavonoids were also studied for their suppression of tumor cells. The anthocyanins were more effective than other flavonoid aglycones, although the aglycones were easily inactivated under the culture conditions.
GEX1A is a microbial product with antitumor activity. HeLa cells cultured with GEX1A accumulated p27(Kip) and its C-terminally truncated form p27*. GEX1A inhibited the pre-mRNA splicing of p27, producing p27* from the unspliced mRNA containing the first intron. p27* lacked the site required for E3 ligase-mediated proteolysis of p27, leading to its accumulation in GEX1A-treated cells. The accumulated p27* was able to bind to and inhibit the cyclin E-Cdk2 complex that causes E3 ligase-mediated degradation of p27, which probably triggers the accumulation of p27. By using a series of photoaffinity-labeling derivatives of GEX1A, we found that GEX1A targeted SAP155 protein, a subunit of SF3b responsible for pre-mRNA splicing. The linker length between the GEX1A pharmacophore and the photoreactive group was critical for detection of the GEX1A-binding protein. GEX1A serves as a novel splicing inhibitor that specifically impairs the SF3b function by binding to SAP155.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.