PurposeZirconia is a potential alternative to titanium for dental and orthopedic implants. Here we report the biological and bone integration capabilities of a new zirconia surface with distinct morphology at the meso-, micro-, and nano-scales.MethodsMachine-smooth and roughened zirconia disks were prepared from yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), with rough zirconia created by solid-state laser sculpting. Morphology of the surfaces was analyzed by three-dimensional imaging and profiling. Rat femur-derived bone marrow cells were cultured on zirconia disks. Zirconia implants were placed in rat femurs and the strength of osseointegration was evaluated by biomechanical push-in test.ResultsThe rough zirconia surface was characterized by meso-scale (50 µm wide, 6–8 µm deep) grooves, micro-scale (1–10 µm wide, 0.1–3 µm deep) valleys, and nano-scale (10–400 nm wide, 10–300 nm high) nodules, whereas the machined surface was flat and uniform. The average roughness (Ra) of rough zirconia was five times greater than that of machined zirconia. The expression of bone-related genes such as collagen I, osteopontin, osteocalcin, and BMP-2 was 7–25 times upregulated in osteoblasts on rough zirconia at the early stage of culture. The number of attached cells and rate of proliferation were similar between machined and rough zirconia. The strength of osseointegration for rough zirconia was twice that of machined zirconia at weeks two and four of healing, with evidence of mineralized tissue persisting around rough zirconia implants as visualized by electron microscopy and elemental analysis.ConclusionThis unique meso-/micro-/nano-scale rough zirconia showed a remarkable increase in osseointegration compared to machine-smooth zirconia associated with accelerated differentiation of osteoblasts. Cell attachment and proliferation were not compromised on rough zirconia unlike on rough titanium. This is the first report introducing a rough zirconia surface with distinct hierarchical morphology and providing an effective strategy to improve and develop zirconia implants.
This study examined the effect of photofunctionalization on bioactivity and osteoconductivity of titanium alloy Ti6Al4V. We also tested a hypothesis that the effect of photofunctionalization is as substantial as the one of surface roughening. Two different surface morphology, a roughened surface (sandblasted and acid-etched surface) and relatively smooth surface (machined surface), was tested. Ti6Al4V samples were photofunctionalized with UV light for 15 min using a photo device. Photofunctionalization converted Ti6Al4V surfaces from hydrophobic to superhydrophilic. The attachment, spread, proliferation, and the expression of functional phenotype of bone marrow-derived osteoblasts were promoted on photofunctionalized Ti6Al4V surfaces. The strength of bone-implant integration examined using a biomechanical push-in test in a rat femur model was at least 100% greater for photofunctionalized implants than for untreated implants. These effects were seen on both surface types. The strength of bone-implant integration for photofunctionalized machined implants was greater than that for untreated roughened implants, indicating that the impact of photofunctionalization may be greater than that of surface roughening. Newly prepared Ti alloy was hydrophilic, whereas the hydrophilic status degraded with time and was converted to hydrophobic in 4 weeks. This finding uncovered biological aging of Ti alloy and allowed us to consider photofunctionalization as a countermeasure for aging. These results suggest that photofunctionalization accelerates and enhances bone-implant integration of Ti6Al4V regardless of smooth and roughened surface features, supporting photofunctionalization as an effective and viable measure for improving efficacy of a wide range of Ti6Al4V-based materials used in dental and orthopedic medicine.
These complex changes, which concomitantly occur in the injured mucosal epithelium, could contribute to the development and maintenance of characteristic mucosal epithelial architectures seen in OLP.
Titanium implants are the standard therapeutic option when restoring missing teeth and reconstructing fractured and/or diseased bone. However, in the 30 years since the advent of micro-rough surfaces, titanium’s ability to integrate with bone has not improved significantly. We developed a method to create a unique titanium surface with distinct roughness features at meso-, micro-, and nano-scales. We sought to determine the biological ability of the surface and optimize it for better osseointegration. Commercially pure titanium was acid-etched with sulfuric acid at different temperatures (120, 130, 140, and 150 °C). Although only the typical micro-scale compartmental structure was formed during acid-etching at 120 and 130 °C, meso-scale spikes (20–50 μm wide) and nano-scale polymorphic structures as well as micro-scale compartmental structures formed exclusively at 140 and 150 °C. The average surface roughness (Ra) of the three-scale rough surface was 6–12 times greater than that with micro-roughness only, and did not compromise the initial attachment and spreading of osteoblasts despite its considerably increased surface roughness. The new surface promoted osteoblast differentiation and in vivo osseointegration significantly; regression analysis between osteoconductivity and surface variables revealed these effects were highly correlated with the size and density of meso-scale spikes. The overall strength of osseointegration was the greatest when the acid-etching was performed at 140 °C. Thus, we demonstrated that our meso-, micro-, and nano-scale rough titanium surface generates substantially increased osteoconductive and osseointegrative ability over the well-established micro-rough titanium surface. This novel surface is expected to be utilized in dental and various types of orthopedic surgical implants, as well as titanium-based bone engineering scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.