Neonicotinoids have been used to protect crops and animals from insect pests since the 1990s, but there are concerns regarding their adverse effects on nontarget organisms, notably on bees. Enhanced resistance to neonicotinoids in pests is becoming well documented. We address the current understanding of neonicotinoid target site interactions, selectivity, and metabolism not only in pests but also in beneficial insects such as bees. The findings are relevant to the management of both neonicotinoids and the new generation of pesticides targeting insect nicotinic acetylcholine receptors.
Neonicotinoid insecticides, which act on nicotinic acetylcholine receptors (nAChRs) in a variety of ways, have extremely low mammalian toxicity, yet the molecular basis of such actions is poorly understood. To elucidate the molecular basis for nAChR-neonicotinoid interactions, a surrogate protein, acetylcholine binding protein from Lymnaea stagnalis (Ls-AChBP) was crystallized in complex with neonicotinoid insecticides imidacloprid (IMI) or clothianidin (CTD). The crystal structures suggested that the guanidine moiety of IMI and CTD stacks with Tyr185, while the nitro group of IMI but not of CTD makes a hydrogen bond with Gln55. IMI showed higher binding affinity for Ls-AChBP than that of CTD, consistent with weaker CH-p interactions in the Ls-AChBP-CTD complex than in the Ls-AChBP-IMI complex and the lack of the nitro group-Gln55 hydrogen bond in CTD. Yet, the NH at position 1 of CTD makes a hydrogen bond with the backbone carbonyl of Trp143, offering an explanation for the diverse actions of neonicotinoids on nAChRs.
The insecticide imidacloprid and structurally related neonicotinoids act selectively on insect nicotinic acetylcholine receptors (nAChRs). To investigate the mechanism of neonicotinoid selectivity, we have examined the effects of mutations to basic amino acid residues in loop D of the nAChR acetylcholine (ACh) binding site on the interactions with imidacloprid. The receptors investigated are the recombinant chicken ␣42 nAChR and Drosophila melanogaster D␣2/chicken 2 hybrid nAChR expressed in Xenopus laevis oocytes. Although mutations of Thr77 in loop D of the 2 subunit resulted in a barely detectable effect on the imidacloprid concentration-response curve for the ␣42 nAChR, T77R;E79V double mutations shifted the curve dramatically to higher affinity binding of imidacloprid. Likewise, T77K;E79R and T77N;E79R double mutations in the D␣22 nAChR also resulted in a shift to a higher affinity for imidacloprid, which exceeded that observed for a single mutation of Thr77 to basic residues. By contrast, these double mutations scarcely influenced the ACh concentration-response curve, suggesting selective interactions with imidacloprid of the newly introduced basic residues. Computational, homology models of the agonist binding domain of the wild-type and mutant ␣42 and D␣22 nAChRs with imidacloprid bound were generated based on the crystal structures of acetylcholine binding proteins of Lymnaea stagnalis and Aplysia californica. The models indicate that the nitro group of imidacloprid interacts directly with the introduced basic residues at position 77, whereas those at position 79 either prevent or permit such interactions depending on their electrostatic properties, thereby explaining the observed functional changes resulting from site-directed mutagenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.