Objective. Observational studies have shown a protective association between coffee consumption and type 2 diabetes mellitus whereas caffeine or caffeinated coffee acutely deteriorates glucose tolerance. We investigated the effects of chronic drinking of instant coffee on glucose and insulin concentrations during a 75 g oral glucose tolerance test. Methods. Overweight men with a mild-to-moderate elevation of fasting plasma glucose were randomly allocated to a 16-week intervention of consuming 5 cups of caffeinated (n = 17) or decaffeinated (n = 15) instant coffee per day or no coffee (n = 13). Results. The caffeinated coffee group showed statistically significant decreases in the 2-hour concentrations and the area under the curve of glucose while neither decaffeinated coffee nor coffee group showed such a change. Waist circumstance decreased in the caffeinated coffee group, increased in the decaffeinated coffee group, and did not change in the noncoffee group (P = 0.002). With adjustment for the change in waist circumference, caffeinated and decaffeinated coffee consumption were associated with a modest decrease in the postload glucose levels. Conclusion. Both caffeinated and decaffeinated coffee may be protective against deterioration of glucose tolerance.
Pupil reactivity can be used to evaluate central nervous system function and can be measured using a quantitative pupillometer. However, whether anesthetic agents affect the accuracy of the technique remains unclear. We examined the effects of anesthetic agents on pupillary reactivity. Thirty-five patients scheduled for breast or thyroid surgery were enrolled in the study. Patients were divided into four groups based on the technique used to maintain anesthesia: a sevoflurane-remifentanil (SEV/REM) group, a sevoflurane (SEV) group, a desflurane-remifentanil (DES/REM) group, and a propofol-remifentanil (PRO/REM) group. We measured maximum resting pupil size (MAX), reduction pupil size ratio (%CH), latency duration (LAT) and neurological pupil index (NPi). A marked reduction in MAX and %CH compared with baseline was observed in all groups, but LAT was unchanged during surgery. NPi reduced within the first hour of surgery in the SEV/REM, SEV, and DES/REM groups, but was not significantly different in the PRO/REM group. Compared with the PRO/REM group, mean %CH and NPi in patients anesthetized with SEV/REM, SEV or DES/REM were markedly lower at 1 h after surgery had commenced. There was no correlation between NPi and bispectral index. Fentanyl given alone decreased pupil size and %CH in light reflex, but did not change the NPi. NPi was decreased by inhalational anesthesia not but intravenous anesthesia. The difference in pupil reactivity between inhalational anesthetic and propofol may indicate differences in the alteration of midbrain reflexs in patients under inhalational or intravenous anesthesia.
Introduction: There is a sex difference in the risk of ischemic acute kidney injury (AKI), and estrogen mediates the protective effect of female sex. We previously demonstrated that preprocedural chronic restoration of physiologic estrogen to ovariectomized female mice ameliorated AKI after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). In the present study, we hypothesized that male mice and aged female mice would benefit from estrogen administration after CA/CPR. We tested the effect of estrogen in a clinically relevant manner by administrating it after CA/CPR. Methods: CA/CPR was performed in young (10-15 weeks), middle-aged (43-48 weeks), and aged (78-87 weeks) C57BL/6 male and female mice. Mice received intravenous 17β-estradiol or vehicle 15 min after resuscitation. Serum chemistries and unbiased stereological assessment of renal injury were completed 24 h after CA. Regional renal cortical blood flow was measured by a laser Doppler, and renal levels of estrogen receptor alpha (ERα) and G protein-coupled estrogen receptor (GPER) were evaluated with immunoblotting. Results: Post-arrest estrogen administration reduced injury in young males without significant changes in renal blood flow (percentage reduction compared with vehicle: serum urea nitrogen, 30 %; serum creatinine (sCr), 41 %; volume of necrotic tubules (VNT), 31 %; P < 0.05). In contrast, estrogen did not affect any outcomes in young females. In aged mice, estrogen significantly reduced sCr (80 %) and VNT (73 %) in males and VNT (51 %) in females. Serum estrogen levels in aged female mice after CA/CPR were the same as levels in male mice. With age, renal ERα was upregulated in females. Conclusions: Estrogen administration after resuscitation from CA ameliorates renal injury in young males and aged mice in both sexes. Because injury was small, young females were not affected. The protective effect of exogenous estrogen may be detectable with loss of endogenous estrogen in aged females and could be mediated by differences in renal ERs. Post-arrest estrogen administration is renoprotective in a sex-and age-dependent manner.
Cardiac arrest (CA) causes hippocampal neuronal death that frequently leads to severe loss of memory function in survivors. No specific treatment is available to reduce neuronal death and improve functional outcome. The brain's inflammatory response to ischemia can exacerbate injury and provides a potential treatment target. We hypothesized that microglia are activated by CA and contribute to neuronal loss. We used a mouse model to determine whether pharmacologic inhibition of the proinflammatory microglial enzyme soluble epoxide hydrolase (sEH) after CA alters microglial activation and neuronal death. The sEH inhibitor 4-phenylchalcone oxide (4-PCO) was administered after successful cardiopulmonary resuscitation (CPR). The 4-PCO treatment significantly reduced neuronal death and improved memory function after CA/CPR. We found early activation of microglia and increased expression of inflammatory tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the hippocampus after CA/CPR, which was unchanged after 4-PCO treatment, while expression of antiinflammatory IL-10 increased significantly. We conclude that sEH inhibition after CA/CPR can alter the transcription profile in activated microglia to selectively induce antiinflammatory and neuroprotective IL-10 and reduce subsequent neuronal death. Switching microglial gene expression toward a neuroprotective phenotype is a promising new therapeutic approach for ischemic brain injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.