Recently, Ikoma (2022) considered optimal constants and extremisers for the 2-dimensional Dirac equation using the spherical harmonics decomposition. Though its argument is valid in any dimensions d ≥ 2, the case d ≥ 3 remains open since it leads us to too complicated calculation: determining all eigenvalues and eigenvectors of infinite dimensional matrices. In this paper, we give optimal constants and extremisers of smoothing estimates for the 3-dimensional Dirac equation. In order to prove this, we construct a certain orthonormal basis of spherical harmonics. With respect to this basis, infinite dimensional matrices actually become block diagonal and so that eigenvalues and eigenvectors can be easily found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.