Synthesis of allenes has been achieved by using palladium-catalyzed hydrogen-transfer reactions. Various propargylic amines, which were readily prepapred from iodobenzenes and propargylic amines by Sonogashira coupling reaction, underwent the hydrogen-transfer reaction in the presence of Pd2dba3.CHCl3/(C6F5)3P catalyst at 100 degrees C in dioxane for 24 h, giving the corresponding allenes in 43-99% yields. Various propargylic alcohols containing a propargylic aminomethyl group, synthesized by the addition of lithium acetylides of N,N-diisopropylprop-2-ynylamine to aldehydes and a ketone, also underwent the hydrogen-transfer reaction in the presence of Pd2dba3.CHCl3 catalyst and (C6F5)3P at 80 degrees C in dioxane, giving the corresponding allenes in 56-92% yields. In the current transformation, propargylic amines can be handled as an allenyl anion equivalent and introduced into various electrophiles to be transformed into allenes under palladium-catalyzed conditions.
Mono- and 1,3-disubstituted allenes were synthesized from the corresponding propargylamines via palladium-catalysed hydride-transfer reaction. In the current transformation, propargylic amines can be handled as allenyl anion equivalents and introduced into various electrophiles to be transformed into allenes under palladium-catalyzed conditions.
Allenes
Allenes Q 0085Synthesis of Allenes via Palladium-Catalyzed Hydrogen-Transfer Reactions: Propargylic Amines as an Allenyl Anion Equivalent. -(NAKAMURA*, H.; KAMAKURA, T.; ISHIKURA, M.; BIELLMANN, J.-F.; J.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.