Here we review a role of a basal ganglia-brainstem (BG-BS) system throughout the mesopontine tegmentum in the control of various types of behavioral expression. First the basal ganglia-brainstem system may contribute to an automatic control of movements, such as rhythmic limb movements and adjustment of postural muscle tone during locomotion, which occurs in conjunction with voluntary control processes. Second, the basal ganglia-brainstem system can be involved in the regulation of awake-sleep states. We further propose the possibility that the basal ganglia-brainstem system is responsible for the integration of volitionally-guided and emotionally-triggered expression of motor behaviors. It can be proposed that dysfunction of the basal ganglia-brainstem system together with that of cortico-basal ganglia loop underlies the pathogenesis of behavioral disturbances expressed in basal ganglia dysfunction.
BackgroundThe common grey wolf (Canis lupus) is found throughout the entire Northern hemisphere and preys on many kinds of mammals. The urine of the wolf contains a number of volatile constituents that can potentially be used for predator–prey chemosignalling. Although wolf urine is put to practical use to keep rabbits, rodents, deer and so on at bay, we are unaware of any prior behavioural studies or chemical analyses regarding the fear-inducing impact of wolf urine on laboratory mice.Methodology/Principal FindingsThree wolf urine samples harvested at different times were used in this study. All of them induced stereotypical fear-associated behaviors (i.e., avoidance and freezing) in female mice. The levels of certain urinary volatiles varied widely among the samples. To identify the volatiles that provoked avoidance and freezing, behavioural, chemical, and immunohistochemical analyses were performed. One of the urine samples (sample C) had higher levels of 2,6-dimethylpyrazine (DMP), trimethylpyrazine (TMP), and 3-ethyl-2,5-dimethyl pyrazine (EDMP) compared with the other two urine samples (samples A and B). In addition, sample C induced avoidance and freezing behaviours more effectively than samples A and B. Moreover, only sample C led to pronounced expression of Fos-immunoreactive cells in the accessory olfactory bulb (AOB) of female mice. Freezing behaviour and Fos immunoreactivity were markedly enhanced when the mice were confronted with a mixture of purified DMP, TMP, and EDMP vs. any one pyrazine alone.Conclusions/SignificanceThe current results suggest that wolf urinary volatiles can engender aversive and fear-related responses in mice. Pyrazine analogues were identified as the predominant active components among these volatiles to induce avoidance and freezing behaviours via stimulation of the murine AOB.
The first electrophysiological studies on umami taste were conducted with rats and cats. Unlike humans, these animals did not show a large synergism between monosodium glutamate (MSG) and disodium guanylate (GMP) or disodium inosinate (IMP). The taste nerve responses of these animals to umami substances were not differentiated from the salt responses. The canine taste system was sensitive to umami substances and showed a large synergism between MSG and GMP or IMP. The umami substances showed no enhancing effects on other basic tastes. Amiloride, an inhibitor for the response to NaCl, did not inhibit the large response induced by the synergism between MSG and the nucleotides, indicating that the response to the umami substances is independent of the response to salt. Single-fiber analysis on the responses of mouse glossopharyngeal nerve and monkey primary taste cortex neurons also showed that the responses to umami substances are independent of other basic tastes. On the basis of these results, it was proposed that the umami taste is a fifth basic taste, and that there is a unique receptor for umami substances. Hence, we compared the taste of agonists for brain glutamate receptors. In humans, the order of intensity of umami taste induced by a mixture of 0.5 mmol/L GMP and 1.5 mmol/L of various agonists was glutamate > ibotenate > L(+)-2-amino-4-phosphonobutyric acid (L-AP4) = (+/-)1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD). Kainate, N-methyl-D-aspartic acid (NMDA) and (RS)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), which are agonists for ionotropic receptors, had no umami taste. It was concluded that the umami receptor is not identical to any known glutamate receptors; there seems, therefore, to be a unique receptor for umami.
The subventricular zone (SVZ) generates an immense number of neurons even during adulthood. These neurons migrate to the olfactory bulb (OB) and differentiate into granule cells and periglomerular cells. The information broadcast by general odorants is received by the olfactory sensory neurons and transmitted to the OB. Recent studies have shown that a reduction of mastication impairs both neurogenesis in the hippocampus and brain functions. To examine these effects, we first measured the difference in Fos-immunoreactivity (Fos-ir) at the principal sensory trigeminal nucleus (Pr5), which receives intraoral touch information via the trigeminal nerve, when female adult mice ingested a hard or soft diet to explore whether soft-diet feeding could mimic impaired mastication. Ingestion of a hard diet induced greater expression of Fos-ir cells at the Pr5 than did a soft diet or no diet. Bromodeoxyuridine-immunoreactive (BrdU-ir) structures in sagittal sections of the SVZ and in the OB of mice fed a soft or hard diet were studied to explore the effects of changes in mastication on newly generated neurons. After 1 month, the density of BrdU-ir cells in the SVZ and OB was lower in the soft-diet-fed mice than in the hard-diet-fed mice. The odor preferences of individual female mice to butyric acid were tested in a Y-maze apparatus. Avoidance of butyric acid was reduced by the soft-diet feeding. We then explored the effects of the hard-diet feeding on olfactory functions and neurogenesis in the SVZ of mice impaired by soft-diet feeding. At 3 months of hard-diet feeding, avoidance of butyric acid was reversed and responses to odors and neurogenesis were recovered in the SVZ. The present results suggest that feeding with a hard diet improves neurogenesis in the SVZ, which in turn enhances olfactory function at the OB.
Using the whole-cell mode of the patch-clamp technique, we recorded action potentials, voltage-activated cationic currents and putative second messenger-activated currents in receptor neurons in the vomeronasal sensory epithelium of female rats. The resting membrane potential and input resistance were -45.5 +/- 2.5 mV (mean +/- SEM, n = 39) and 1.5 +/- 0.2 G omega (mean +/- SEM, n = 37). Current injection of 1-3 pA induced overshooting action potentials. The firing frequency increased with increasing current injections linearly from 1 to 10 pA and reached a plateau at 30 pA, suggesting that rat vomeronasal receptor neurons sensitively elicit action potentials in response to a small receptor potential. Under voltage clamp, voltage-dependent Na+ inward current, inward Ca2+ current, sustained outward K+ current and Ca-(2+)-activated K(+)-current were identified. Dialysis of D-inositol-1,4,5-trisphosphate (D-IP3) induced inward currents with an increase in membrane conductance in approximately 54% of the cells and inward current fluctuations in 15% of the cell. L-IP3 also induced inward currents and current fluctuations in 53 and 13% of the cells respectively. The mean amplitude of inward currents induced by 100 microM D-IP3 and L-IP3 were 84.6 +/- 14.0 pA (SEM, n = 82) and 66.1 +/- 9.4 pA (SEM, n = 100) respectively. The IP3-induced responses were blocked by elimination of Na+ and Ca2+ in the external solution or application of 10 microM ruthenium red. The present study suggested that IP3-mediated transduction pathways exist in rat vomeronasal receptor neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.