Fine needlelike crystals of C60 have been formed by a liquid–liquid interfacial precipitation method which uses an interface of the concentrated toluene solution of C60/isopropyl alcohol. The needlelike crystals of C60 with a diameter of submicrons (“C60 nanowhiskers”) were found to be single crystalline and composed of thin slabswith a thickness of about 10 nm. The intermolecular distance of the C60 nanowhiskerswas found to be shortened along the growth axis as compared with the pristine C60crystals, indicating a formation of strong bonding between C60 molecules. TheC60 nanowhiskers are assumed to be polymerized via the “2 + 2” cycloaddition inthe close-packed [110]c direction.
Highly ordered mesoporous titania films consisting of crystalline nanopillars with open-spaced, perpendicular, and continuous porosity have been prepared via structural transformation from a 3D hexagonal mesostructure during the thermal treatment. The mechanism of the structural transformation is explained by the crystallization of the titania framework and the large contraction of the initial 3D hexagonal mesostructured film upon calcination. This structural transformation provides a new approach to generate mesoporous thin-film materials with unique structures.
LN status, parametrial invasion, LVSI, and histology of pure adenocarcinoma are important histopathologic prognostic factors of cervical carcinoma treated with radical hysterectomy and systematic retroperitoneal lymphadenectomy. Prognosis for patients with cervical carcinoma may be stratified by combined analysis of these histopathologic prognostic factors. Postoperative therapy needs to be individualized according to these prognostic factors and validated for its efficacy using randomized clinical trials.
TiO2 thin films with a hexagonal mesoporous structure and an anatase‐type crystalline framework are easily synthesized by a sol–gel method at low pH, using an EO–PO–EO block copolymer as template. While the TiO2/polymer superstructure originally has a primitive cubic structure, annealing at 150 °C affords a phase transition to hexagonal (see Figure), which persists upon template removal by calcination.
Ordered aggregated BaTiO(3) nanocubes with a narrow size distribution were obtained in an aqueous process by using bis(ammonium lactate) titanium dihydroxide (TALH) as Ti source in the presence of oleic acid and tert-butylamine. Kinetics of the formation of BaTiO(3) nanocubes indicated that an in situ growth mechanism was dominant and the superlattice of nanocubes formed in situ through the growth of BaTiO(3) nanoparticles in Ti-based hydrous gel. The size and morphology of nanocubes were controlled by tuning the concentration and molar ratio of surfactants. A novel growth model dependant on the structure of Ti precursor for the formation and morphology control of BaTiO(3) nanocubes and their superlattice was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.