Glycogen phosphorylase (GP) is an allosteric enzyme whose catalytic site comprises six subsites (SG, SG, SG, SG, SG, and SP) that are complementary to tandem five glucose residues and one inorganic phosphate molecule, respectively. In the catalysis of GP, the nonreducing-end glucose (Glc) of the maltooligosaccharide substrate binds to SG and is then phosphorolyzed to yield glucose 1-phosphate. In this study, we probed the catalytic site of rabbit muscle GP using pyridylaminated-maltohexaose (Glcα1-4Glcα1-4Glcα1-4Glcα1-4Glcα1-4GlcPA, where GlcPA = 1-deoxy-1-[(2-pyridyl)amino]-D-glucitol]; abbreviated as PA-0) and a series of specifically modified PA-0 derivatives (Glc -AltNAc-Glc -GlcPA, where m + n = 4 and AltNAc is 3-acetoamido-3-deoxy-D-altrose). PA-0 served as an efficient substrate for GP, whereas the other PA-0 derivatives were not as good as the PA-0, indicating that substrate recognition by all the SG -SG subsites was important for the catalysis of GP. By comparing the initial reaction rate toward the PA-0 derivatives (V ) with that toward PA-0 (V), we found that the value of V /V decreased significantly as the level of allosteric activation of GP increased. These results suggest that some conformational changes have taken place in the maltooligosaccharide-binding region of the GP catalytic site during allosteric regulation.
Dibenzo[b,g]phosphindolizine oxide and three types of benzo[e]naphthophosphindolizine oxides have been synthesized by the ring-closing metathesis of benzo[b]phosphole oxide and naphthophosphole oxides with two olefin tethers. Their molecular structures and properties were revealed by Xray crystallographic analysis, UV-vis spectroscopy, and electrochemical analysis. The number and position of the benzene rings were found to alter the structural geometry and the HOMO/LUMO energy levels, and their effects were investigated by theoretical calculations. Among the phosphindolizine oxide derivatives investigated, only benzo[e]naphtho[2,3b]phosphindolizine oxide with the naphthalene ring fused at 2,3-positions showed weak yellow fluorescence with a large Stokes shift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.